CSE 332 Winter 2026
Lecture 11: hashing 2

Nathan Brunelle
http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

Dictionary (Map) ADT

* Contents:
» Sets of key+value pairs

s Keysmust-be-comparable Keys have a hash function

* Operations:

* insert(key, value)
* Adds the (key,value) pair into the dictionary

 If the key already has a value, overwrite the old value
* Consequence: Keys cannot be repeated

 find(key)
* Returns the value associated with the given key

e delete(key)

 Remove the key (and its associated value)

Next topic: Hash Tables

Data Structure Time to find Time to delete

Unsorted Array O(n) O(n) O(n)
Unsorted Linked List O(n) O(n) O(n)
Sorted Array O(n) O(logn) O(n)
Sorted Linked List O(n) O(n) O(n)
Binary Search Tree O (height) O (height) O (height)
AVL Tree O(logn) O(logn) O(logn)
Hash Table (Worst case) O(n) O(n) O(n)

Hash Table (Average) 0(1) 0(1) 0(1)

Hash Tables

* |dea:
* Have a small array to store information

* Use a hash function to convert the key into an index
* Hash function should “scatter” the keys, behave as if it randomly assigned keys to indices
» Store key at the index given by the hash function

* Do something if two keys map to the same place (should be very rare)
* Collision resolution

Index Insert / find /
h(k) pbetweenO delete & value
and length-1

Key Object

Properties of a “Good” Hash

Definition: A hash function maps objects to integers

Consistent
* Obijects considered “equal” should hash to the same value
e Deterministic: running the hash function on the same object twice should yield the same result

Uniform
* Should be able to use every index in a fixed-size array
* Should use every index at roughly equal rates

Effective
* It should be difficult to find two objects which hash to the same value
* Given on object, it should be hard to find a different object which hashes to the same value
* “Avalanche effect”: making a small change to the object yields big changes in the value it hashes to

Efficient
e Time to calculate the hash should be very small

|deal Insert procedure

Supposing we have a “good” hash function:

insert(key, value){
h = key.hash();
table[h % table.length] = value;

Problem: It’s possible that two different keys map to the same index!
This is called a “collision”

Collision Resolution

* A Collision occurs when we want to insert something into an already-
occupied position in the hash table

* 2 main strategies:

e Separate Chaining
* Use a secondary data structure to contain the items
* E.g. eachindexin the hash table is itself a linked list
* Open Addressing

* Use a different spot in the table instead
* Linear Probing

* Quadratic Probing
* Double Hashing

Separate Chaining Insert

 Toinsert k, v:
e Compute theindexusingi = h(k) % table.length
* Add the key-value pair to the data structure at table[1i]

Separate Chaining Find

e To find k:

e Compute theindexusingi = h(k) % table.length
* Call find with the key on the data structure at table[1i]

Separate Chaining Delete

* To delete k:
e Compute theindexusingi = h(k) % table.length
* Call delete with the key on the data structure at table[1i]

Formal Running Time Analysis

* The load factor of a hash table represents the average number of

items per “bucket”
n

- length

* Assume we have a hash table that uses a linked-list for separate
chaining
* What is the expected number of comparisons needed in an unsuccessful find?

* What is the expected number of comparisons needed in a successful find?

* How can we make the expected running time 0(1)?

Formal Running Time Analysis

* The load factor of a hash table represents the average number of items per
“bucket”

n

length

e Assume we have a hash table that uses a linked-list for separate chaining
* What is the expected number of comparisons needed in an unsuccessful find?
e A

* What is the expected number of comparisons needed in a successful find?
A

2

* How can we make the expected running time 0(1)?
* Pick a constant value, resize the array whenever A exceeds that constant

Rehashing

e If your load factor A gets too large, copy everything over to a larger
hash table
* To do this: make a new, larger array

* Re-insert all items into the new hash table by reapplying the hash function
* We need to reapply the hash function because items should map to a different index

* New array should be “roughly” double the length (but probably still want it to
be prime)

* What does “too large” mean?
* For separate chaining, typically we want 1 < 2

* For open addressing, typically we want 1 < %

Load Factor?

k,v
k,v k,v
0 2 5

Load Factor?

kv k,v

k,v k,v

k,v k,v k,v

0 2 5 9

Load Factor?

k;v k,v k’v

k,v k;v k,v k;v

k,v k,v k,v k,v k,v| |k,v| |k,v
0 2 4 5 /7 8 9

Formal Running Time Analysis

* The load factor of a hash table represents the average number of

items per “bucket”
n

- length

* Assume we have a hash table that uses a linked-list for separate
chaining
* What is the expected number of comparisons needed in an unsuccessful find?

* What is the expected number of comparisons needed in a successful find?

* How can we make the expected running time 0(1)?

Formal Running Time Analysis

* The load factor of a hash table represents the average number of items per
“bucket”

n

length

e Assume we have a hash table that uses a linked-list for separate chaining
* What is the expected number of comparisons needed in an unsuccessful find?
e A

* What is the expected number of comparisons needed in a successful find?
A

2

* How can we make the expected running time 0(1)?
* Pick a constant value, resize the array whenever A exceeds that constant

Rehashing

e If your load factor A gets too large, copy everything over to a larger
hash table
* To do this: make a new, larger array

* Re-insert all items into the new hash table by reapplying the hash function
* We need to reapply the hash function because items should map to a different index

* New array should be “roughly” double the length (but probably still want it to
be prime)

* What does “too large” mean?
* For separate chaining, typically we want 1 < 2

* For open addressing, typically we want 1 < %

Collision Resolution: Linear Probing

* When there’s a collision, use the next open space in the table

Linear Probing: Insert Procedure

* Toinsert k, v
* Calculatei = h(k) % table.length
If table[i] is occupied then try index (i+1) % table.length
If that is occupied try index (1+2) % table.length
If that is occupied try index (1+3) % table.length

Linear Probing: Find

Linear Probing: Find

* To find key k

* Calculatei = h(k) % table.length
If table[i] is occupied but doesn’t have k, check (i+1) % table.length
If that is occupied and doesn’t contain k, check (i+2) % table.length
If that is occupied and doesn’t contain k, check (i+3) % table.length
Repeat until you either find k or else you reach an empty cell in the table

Linear Probing: Delete

* Suppose A, B, C, D, and E all hashed to 3
* Now let’s delete B

Before: A B C

After:

Linear Probing: Delete

e Suppose A, B, and E all hashed to 3, and Cand D hashed to 5
* Now let’s delete B

Before: A B C D E

After:

Linear Probing: Delete

e Suppose A and E hashed to 3, and B,C, and D hashed to 4
* Now let’s delete B

Before: A B C D E

After:

Linear Probing: Delete

* Option 1 (harder): Plug the hole with other items in a way that makes
probes behave correctly

* Option 2 (easier): “Tombstone” deletion. Leave a special object that
indicates an something was deleted from there

 The tombstone does not act as an open space when finding (so keep looking

after its reached)

* When inserting you can replace a tombstone with a new item

k,v

k,v

k,v

k,v

0

1

2

3

4

5

6 7 8 9

Linear Probing + Tombstone: Find

* To find key k
* Calculatei = h(k) % table.length
* While table[1] has a key otherthank,seti = (i+1) % table.length
* If you come across k return table[1i]
* |f you come across an empty index, the find was unsuccessful

Linear Probing + Tombstone: Insert

* Toinsert k, v
* Calculatei = h(k) % table.length
* While table[1] has a key otherthank,seti = (i+1) % table.length

* Iftable[i] has atombstone, setx = i
 That is where we will insert if the find is unsuccessful

* If you come across k, set table[i] = k,v
* If you come across an empty index, the find was unsuccessful

* Set table[x] = k,vif we saw a tombstone
« Set table[x] = k,Vv otherwise

Downsides of Linear Probing

* What happens when A approaches 1?
e Get longer and longer contiguous blocks

* A collision is guaranteed to grow a block
* Larger blocks experience more collisions
* Feedback loop!

* What happens when A exceeds 17
* Impossible!
* You can’t insert more stuff

Quadratic Probing: Insert Procedure

* Toinsert k, v
* Calculatei = h(k) % table.length
If table[i] is occupied then try (i+1%) % table.length
If that is occupied try(i+2%) % table.length
If that is occupied try(i+3%) % table.length
If that is occupied try(i+42) % table.length

Quadratic Probing: Example

* |Insert:
. 76
* 40
. 48
5
* 55
« 47

Using Quadratic Probing

* If you probe table. length times, you start repeating indices

e If table.length is primeand A < %then you’re guaranteed to find
an open spot in at most table.length/2 probes

* Helps with the clustering problem of linear probing, but does not help
if many things hash to the same value

Double Hashing: Insert Procedure

* Given h and g are both good hash functions

* Toinsert k,v
* Calculatei = h(k) % table.length
e If table[i] is occupied thentry (i+g(k)) % table.length
If that is occupied try (i+2*g(k)) % table.length
If that is occupied try (i+3*g(k)) % table.length
If that is occupied try (i+4*g(k)) % table.length

	Slide 1: CSE 332 Winter 2026 Lecture 11: hashing 2
	Slide 2: Dictionary (Map) ADT
	Slide 3: Next topic: Hash Tables
	Slide 4: Hash Tables
	Slide 5: Properties of a “Good” Hash
	Slide 6: Ideal Insert procedure
	Slide 7: Collision Resolution
	Slide 8: Separate Chaining Insert
	Slide 9: Separate Chaining Find
	Slide 10: Separate Chaining Delete
	Slide 11: Formal Running Time Analysis
	Slide 12: Formal Running Time Analysis
	Slide 13: Rehashing
	Slide 14: Load Factor?
	Slide 15: Load Factor?
	Slide 16: Load Factor?
	Slide 17: Formal Running Time Analysis
	Slide 18: Formal Running Time Analysis
	Slide 19: Rehashing
	Slide 20: Collision Resolution: Linear Probing
	Slide 21: Linear Probing: Insert Procedure
	Slide 22: Linear Probing: Find
	Slide 23: Linear Probing: Find
	Slide 24: Linear Probing: Delete
	Slide 25: Linear Probing: Delete
	Slide 26: Linear Probing: Delete
	Slide 27: Linear Probing: Delete
	Slide 28: Linear Probing + Tombstone: Find
	Slide 29: Linear Probing + Tombstone: Insert
	Slide 30: Downsides of Linear Probing
	Slide 31: Quadratic Probing: Insert Procedure
	Slide 32: Quadratic Probing: Example
	Slide 33: Using Quadratic Probing
	Slide 34: Double Hashing: Insert Procedure

