
CSE 332 Winter 2026
Lecture 11: hashing 2

Nathan Brunelle

http://www.cs.uw.edu/332

http://www.cs.uw.edu/332


Dictionary (Map) ADT

• Contents:
• Sets of key+value pairs
• Keys must be comparable Keys have a hash function

• Operations:
• insert(key, value)

• Adds the (key,value) pair into the dictionary
• If the key already has a value, overwrite the old value

• Consequence: Keys cannot be repeated

• find(key)
• Returns the value associated with the given key

• delete(key)
• Remove the key (and its associated value)



Next topic: Hash Tables

Data Structure Time to insert Time to find Time to delete

Unsorted Array Θ(𝑛) Θ(𝑛) Θ(𝑛)

Unsorted Linked List Θ(𝑛) Θ(𝑛) Θ(𝑛)

Sorted Array Θ 𝑛 Θ(log 𝑛) Θ(𝑛)

Sorted Linked List Θ 𝑛 Θ 𝑛 Θ 𝑛

Binary Search Tree Θ height Θ height Θ height

AVL Tree Θ(log 𝑛) Θ(log 𝑛) Θ(log 𝑛)

Hash Table (Worst case) Θ(𝑛) Θ(𝑛) Θ(𝑛)

Hash Table (Average) Θ 1 Θ 1 Θ 1



Hash Tables

• Idea:
• Have a small array to store information

• Use a hash function to convert the key into an index
• Hash function should “scatter” the keys, behave as if it randomly assigned keys to indices

• Store key at the index given by the hash function

• Do something if two keys map to the same place (should be very rare)
• Collision resolution

ℎ(𝑘)

Key Object

Index 
between 0 
and length-1

Insert / find /
delete & value



Properties of a “Good” Hash

• Definition: A hash function maps objects to integers

• Consistent
• Objects considered “equal” should hash to the same value
• Deterministic: running the hash function on the same object twice should yield the same result

• Uniform
• Should be able to use every index in a fixed-size array
• Should use every index at roughly equal rates

• Effective
• It should be difficult to find two objects which hash to the same value
• Given on object, it should be hard to find a different object which hashes to the same value
• “Avalanche effect”: making a small change to the object yields big changes in the value it hashes to

• Efficient
• Time to calculate the hash should be very small



Ideal Insert procedure

Supposing we have a “good” hash function:

insert(key, value){

 h = key.hash();

 table[h % table.length] = value;

}

Problem: It’s possible that two different keys map to the same index!

This is called a “collision”



Collision Resolution

• A Collision occurs when we want to insert something into an already-
occupied position in the hash table

• 2 main strategies:
• Separate Chaining

• Use a secondary data structure to contain the items
• E.g. each index in the hash table is itself a linked list

• Open Addressing
• Use a different spot in the table instead

• Linear Probing

• Quadratic Probing

• Double Hashing

0 1 2 3 4 5 6 7 8 9



Separate Chaining Insert

• To insert k, v:
• Compute the index using i = h(k) % table.length

• Add the key-value pair to the data structure at table[i]

0 1 2 3 4 5 6 7 8 9

k,v k,v

k,v



Separate Chaining Find

• To find k:
• Compute the index using i = h(k) % table.length

• Call find with the key on the data structure at table[i]

0 1 2 3 4 5 6 7 8 9

k,v k,v

k,v



Separate Chaining Delete

• To delete k:
• Compute the index using i = h(k) % table.length

• Call delete with the key on the data structure at table[i]

0 1 2 3 4 5 6 7 8 9

k,v k,v

k,v



Formal Running Time Analysis

• The load factor of a hash table represents the average number of 
items per “bucket”

• 𝜆 =
𝑛

𝑙𝑒𝑛𝑔𝑡ℎ

• Assume we have a hash table that uses a linked-list for separate 
chaining
• What is the expected number of comparisons needed in an unsuccessful find?

• What is the expected number of comparisons needed in a successful find?

• How can we make the expected running time Θ(1)?



Formal Running Time Analysis

• The load factor of a hash table represents the average number of items per 
“bucket”

• 𝜆 =
𝑛

𝑙𝑒𝑛𝑔𝑡ℎ

• Assume we have a hash table that uses a linked-list for separate chaining
• What is the expected number of comparisons needed in an unsuccessful find?

• 𝜆

• What is the expected number of comparisons needed in a successful find?

•
𝜆

2

• How can we make the expected running time Θ(1)?
• Pick a constant value, resize the array whenever 𝜆 exceeds that constant



Rehashing

• If your load factor 𝜆 gets too large, copy everything over to a larger 
hash table
• To do this: make a new, larger array

• Re-insert all items into the new hash table by reapplying the hash function
• We need to reapply the hash function because items should map to a different index

• New array should be “roughly” double the length (but probably still want it to 
be prime)

• What does “too large” mean?
• For separate chaining, typically we want 𝜆 < 2

• For open addressing, typically we want 𝜆 <
1

2



Load Factor?

0 1 2 3 4 5 6 7 8 9

𝑘, 𝑣 𝑘, 𝑣

𝑘, 𝑣



Load Factor?

0 1 2 3 4 5 6 7 8 9

𝑘, 𝑣 𝑘, 𝑣

𝑘, 𝑣

𝑘, 𝑣

𝑘, 𝑣

𝑘, 𝑣

𝑘, 𝑣

𝑘, 𝑣



Load Factor?

0 1 2 3 4 5 6 7 8 9

𝑘, 𝑣 𝑘, 𝑣

𝑘, 𝑣

𝑘, 𝑣

𝑘, 𝑣

𝑘, 𝑣

𝑘, 𝑣

𝑘, 𝑣

𝑘, 𝑣

𝑘, 𝑣 𝑘, 𝑣𝑘, 𝑣

𝑘, 𝑣

𝑘, 𝑣

𝑘, 𝑣



Formal Running Time Analysis

• The load factor of a hash table represents the average number of 
items per “bucket”

• 𝜆 =
𝑛

𝑙𝑒𝑛𝑔𝑡ℎ

• Assume we have a hash table that uses a linked-list for separate 
chaining
• What is the expected number of comparisons needed in an unsuccessful find?

• What is the expected number of comparisons needed in a successful find?

• How can we make the expected running time Θ(1)?



Formal Running Time Analysis

• The load factor of a hash table represents the average number of items per 
“bucket”

• 𝜆 =
𝑛

𝑙𝑒𝑛𝑔𝑡ℎ

• Assume we have a hash table that uses a linked-list for separate chaining
• What is the expected number of comparisons needed in an unsuccessful find?

• 𝜆

• What is the expected number of comparisons needed in a successful find?

•
𝜆

2

• How can we make the expected running time Θ(1)?
• Pick a constant value, resize the array whenever 𝜆 exceeds that constant



Rehashing

• If your load factor 𝜆 gets too large, copy everything over to a larger 
hash table
• To do this: make a new, larger array

• Re-insert all items into the new hash table by reapplying the hash function
• We need to reapply the hash function because items should map to a different index

• New array should be “roughly” double the length (but probably still want it to 
be prime)

• What does “too large” mean?
• For separate chaining, typically we want 𝜆 < 2

• For open addressing, typically we want 𝜆 <
1

2



Collision Resolution: Linear Probing

• When there’s a collision, use the next open space in the table

0 1 2 3 4 5 6 7 8 9



Linear Probing: Insert Procedure

• To insert k,v
• Calculate i = h(k) % table.length

• If table[i] is occupied then try index (i+1) % table.length

• If that is occupied try index (i+2) % table.length

• If that is occupied try index (i+3) % table.length

• …

0 1 2 3 4 5 6 7 8 9



Linear Probing: Find

0 1 2 3 4 5 6 7 8 9



Linear Probing: Find

• To find key k
• Calculate i = h(k) % table.length

• If table[i] is occupied but doesn’t have k, check (i+1) % table.length

• If that is occupied and doesn’t contain k, check (i+2) % table.length

• If that is occupied and doesn’t contain k, check (i+3) % table.length

• Repeat until you either find 𝑘 or else you reach an empty cell in the table

0 1 2 3 4 5 6 7 8 9



Linear Probing: Delete

• Suppose A, B, C, D, and E all hashed to 3

• Now let’s delete B

A B C D E

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

Before:

After:



Linear Probing: Delete

• Suppose A, B, and E all hashed to 3, and C and D hashed to 5

• Now let’s delete B

A B C D E

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

Before:

After:



Linear Probing: Delete

• Suppose A and E hashed to 3, and B,C, and D hashed to 4

• Now let’s delete B

A B C D E

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

Before:

After:



Linear Probing: Delete

• Option 1 (harder): Plug the hole with other items in a way that makes 
probes behave correctly

• Option 2 (easier): “Tombstone” deletion. Leave a special object that 
indicates an something was deleted from there
• The tombstone does not act as an open space when finding (so keep looking 

after its reached)

• When inserting you can replace a tombstone with a new item

𝑘, 𝑣 𝑘, 𝑣 𝑘, 𝑣 𝑘, 𝑣

0 1 2 3 4 5 6 7 8 9



Linear Probing + Tombstone: Find

• To find key k
• Calculate i = h(k) % table.length

• While table[i] has a key other than k, set i = (i+1) % table.length

• If you come across k return table[i]

• If you come across an empty index, the find was unsuccessful

0 1 2 3 4 5 6 7 8 9



Linear Probing + Tombstone: Insert

• To insert k,v
• Calculate i = h(k) % table.length

• While table[i] has a key other than k, set i = (i+1) % table.length
• If table[i] has a tombstone, set x = i

• That is where we will insert if the find is unsuccessful

• If you come across k, set table[i] = k,v

• If you come across an empty index, the find was unsuccessful
• Set table[x] = k,v if we saw a tombstone

• Set table[x] = k,v otherwise

0 1 2 3 4 5 6 7 8 9



Downsides of Linear Probing

• What happens when 𝜆 approaches 1?
• Get longer and longer contiguous blocks

• A collision is guaranteed to grow a block
• Larger blocks experience more collisions

• Feedback loop!

• What happens when 𝜆 exceeds 1?
• Impossible!

• You can’t insert more stuff



Quadratic Probing: Insert Procedure

• To insert k,v
• Calculate i = h(k) % table.length

• If table[i] is occupied then try (i+12) % table.length

• If that is occupied try(i+22) % table.length

• If that is occupied try(i+32) % table.length

• If that is occupied try(i+42) % table.length

• …

0 1 2 3 4 5 6 7 8 9



Quadratic Probing: Example

• Insert:
• 76

• 40 

• 48 

• 5 

• 55 

• 47

0 1 2 3 4 5 6



Using Quadratic Probing

• If you probe table.length times, you start repeating indices

• If table.length is prime and 𝜆 <
1

2
 then you’re guaranteed to find 

an open spot in at most table.length/2 probes

• Helps with the clustering problem of linear probing, but does not help 
if many things hash to the same value



Double Hashing: Insert Procedure

• Given h and g are both good hash functions

• To insert k,v
• Calculate i = h(k) % table.length

• If table[i] is occupied then try (i+g(k)) % table.length

• If that is occupied try (i+2*g(k)) % table.length

• If that is occupied try (i+3*g(k)) % table.length

• If that is occupied try (i+4*g(k)) % table.length

• …

0 1 2 3 4 5 6 7 8 9


	Slide 1: CSE 332 Winter 2026 Lecture 11: hashing 2
	Slide 2: Dictionary (Map) ADT
	Slide 3: Next topic: Hash Tables
	Slide 4: Hash Tables
	Slide 5: Properties of a “Good” Hash
	Slide 6: Ideal Insert procedure
	Slide 7: Collision Resolution
	Slide 8: Separate Chaining Insert
	Slide 9: Separate Chaining Find
	Slide 10: Separate Chaining Delete
	Slide 11: Formal Running Time Analysis
	Slide 12: Formal Running Time Analysis
	Slide 13: Rehashing
	Slide 14: Load Factor?
	Slide 15: Load Factor?
	Slide 16: Load Factor?
	Slide 17: Formal Running Time Analysis
	Slide 18: Formal Running Time Analysis
	Slide 19: Rehashing
	Slide 20: Collision Resolution: Linear Probing
	Slide 21: Linear Probing: Insert Procedure
	Slide 22: Linear Probing: Find
	Slide 23: Linear Probing: Find
	Slide 24: Linear Probing: Delete
	Slide 25: Linear Probing: Delete
	Slide 26: Linear Probing: Delete
	Slide 27: Linear Probing: Delete
	Slide 28: Linear Probing + Tombstone: Find
	Slide 29: Linear Probing + Tombstone: Insert
	Slide 30: Downsides of Linear Probing
	Slide 31: Quadratic Probing: Insert Procedure
	Slide 32: Quadratic Probing: Example
	Slide 33: Using Quadratic Probing
	Slide 34: Double Hashing: Insert Procedure

