CSE 332 Winter 2026
Lecture 10: hashing

Nathan Brunelle
http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

Dictionary (Map) ADT

* Contents:
» Sets of key+value pairs
* Keys must be comparable

* Operations:

* insert(key, value)
* Adds the (key,value) pair into the dictionary

 If the key already has a value, overwrite the old value
* Consequence: Keys cannot be repeated

 find(key)
* Returns the value associated with the given key

e delete(key)

 Remove the key (and its associated value)

Dictionary Data Structures

Data Structure Time to find Time to delete

Unsorted Array 0(1) O(n) O(n)
Unsorted Linked List 0(1) O(n) O(n)
Sorted Array O(n) O(logn) O(n)
Sorted Linked List O(n) O(n) O(n)
Heap O(logn) O(n) O(n)
Binary Search Tree O (height) O (height) O (height)

AVL Tree O(logn) O(logn) O(logn)

BSTs and AVL Trees

* Binary Search Tree:

. iA binary tree where for each node, all keys in its left subtree are smaller and all keys in its right subtree are
arger

* Find:
* |f it matches, return the value.
* If the search key is less than the current node, look left. If it’s greater, look right.
* |f we reach an empty spot, find was unsuccessful
* Insert:
* Do afind, if it was successful then update the value

e If it was unsuccessful, add a new node to the empty spot we found.
* Delete:

* If the deleted node is a leaf, just remove it
* |If the deleted node had one child, replace it with that one child
* |If the deleted node had 2 children, replace it with the largest key to the left

e AVL Tree:

* A binary search tree where for each node, the height of its left subtree and the height of its right subtree
are off by at most 1.
* Find:
* Same as BST
* Insert:

* Do a BST insert, then rotate if tree is unbalanced (apply one LL, RR, LR, RL case)
* Delete:

* Do a BST delete, then rotate if the tree is unbalanced (apply LL, RR, LR, RL cases as needed from leaf to root)

Other Tree-based Dictionaries

e Red-Black Trees

* Similar to AVL Trees in that we add shape rules to BSTs

* More “relaxed” shape than an AVL Tree
* Trees can be taller (though not asymptotically so)
* Needs to move nodes less frequently

* This is what Java’s TreeMap uses!

* Tries
e Similar to a Huffman Tree
* Requires keys to be sequences (e.g. Strings)
* Combines shared prefixes among keys to save space

e Often used for text-based searches
e Web search
e Genomes

Next topic: Hash Tables

Data Structure Time to find Time to delete

Unsorted Array O(n) O(n) O(n)
Unsorted Linked List O(n) O(n) O(n)
Sorted Array O(n) O(logn) O(n)
Sorted Linked List O(n) O(n) O(n)
Binary Search Tree O (height) O (height) O (height)
AVL Tree O(logn) O(logn) O(logn)
Hash Table (Worst case) O(n) O(n) O(n)

Hash Table (Average) 0(1) 0(1) 0(1)

Dictionary (Map) ADT

* Contents:
» Sets of key+value pairs

s Keysmust-be-comparable Keys have a hash function

* Operations:

* insert(key, value)
* Adds the (key,value) pair into the dictionary

 If the key already has a value, overwrite the old value
* Consequence: Keys cannot be repeated

 find(key)
* Returns the value associated with the given key

e delete(key)

 Remove the key (and its associated value)

The Best Dictionary Data Structure!

* Think of every key as a number
* Give each key its own index in an array

insert(key, value){
arr[key]=value;

find(key){
return arr[key];

}
delete(key){

arr[key] = null;
}

Problem?

Hash Tables

* |dea:
* Have a small array to store information

* Use a hash function to convert the key into an index
* Hash function should “scatter” the keys, behave as if it randomly assigned keys to indices
» Store key at the index given by the hash function

* Do something if two keys map to the same place (should be very rare)
* Collision resolution

Index Insert / find /
h(k) pbetweenO delete & value
and length-1

Key Object

Example

* Key: Phone Number

* Value: People

* Table size: 10

* h(phone) = number as an integer % 10
* h(8675309) =9

What Influences Running time?

* How long hashing itself takes

* Likelihood of collisions
 Size of the array vs number of values in the array
» “quality” of our hash function

* What we do when we have a collision

Properties of a “Good” Hash

Definition: A hash function maps objects to integers

Consistent
* Obijects considered “equal” should hash to the same value
e Deterministic: running the hash function on the same object twice should yield the same result

Uniform
* Should be able to use every index in a fixed-size array
* Should use every index at roughly equal rates

Effective
* It should be difficult to find two objects which hash to the same value
* Given on object, it should be hard to find a different object which hashes to the same value
* “Avalanche effect”: making a small change to the object yields big changes in the value it hashes to

Efficient
* Time to calculate the hash should be very small

A Bad Hash (and phone number trivia)

* h(phone) = the first digit of the phone number
* Assume 10-digit format
* No US phone numbers start with 1 or 0
* |If we're sampling from this class, 2 is by far the most likely

e Consistent? Yes!
e Uniform? No!
e Effective? No!

e Efficient? Yes!

Compare These Hash Functions (for strings)

* Lets = 54515, ... S;—1 be a string of length m
* Let a(s;) be the ascii encoding of the character s;

* hy(s) = a(sop)

*ha(s) = (X% alsy)

* ha(s) = (X" a(sy) - 37Y)

* hy(s) = (2 -y ta(s) - 37i)

Compare These Hash Functions (for strings)

* Llet s = 59S1S5 ... S;;—1 be a string of length m
* Let a(s;) be the ascii encoding of the character s;
* hy(s) = a(sp)
* |s: consistent, efficient
-1
* ho(s) = (Z5" als)
* |s: consistent, efficient, and possibly uniform
* ha(s) = (ZZo" alsy) - 37Y)
* |s: Consistent, efficient, uniform, and effective
* hy(s) = (2 i als;) 37‘)

* |s: Consistent, efficient, effective

|deal Insert procedure

Supposing we have a “good” hash function:

insert(key, value){
h = key.hash();
arr[h % table.length] = value;

Problem: It’s possible that two different keys map to the same index!
This is called a “collision”

Collision Resolution

* A Collision occurs when we want to insert something into an already-
occupied position in the hash table

* 2 main strategies:

e Separate Chaining
* Use a secondary data structure to contain the items
* E.g. each indexin the hash table is itself a linked list
* Open Addressing

* Use a different spot in the table instead
* Linear Probing

* Quadratic Probing
* Double Hashing

Separate Chaining Insert

 Toinsert k, v:
e Compute theindexusingi = h(k) % table.length
* Add the key-value pair to the data structure at table[1i]

Separate Chaining Find

e To find k:

e Compute theindexusingi = h(k) % table.length
* Call find with the key on the data structure at table[1i]

Separate Chaining Delete

* To delete k:
e Compute theindexusingi = h(k) % table.length
* Call delete with the key on the data structure at table[1i]

Formal Running Time Analysis

* The load factor of a hash table represents the average number of

items per “bucket”
n

- length

* Assume we have a hash table that uses a linked-list for separate
chaining
* What is the expected number of comparisons needed in an unsuccessful find?

* What is the expected number of comparisons needed in a successful find?

* How can we make the expected running time 0(1)?

Formal Running Time Analysis

* The load factor of a hash table represents the average number of items per
“bucket”

n

length

e Assume we have a hash table that uses a linked-list for separate chaining
* What is the expected number of comparisons needed in an unsuccessful find?
e A
 What is the expected number of comparisons needed in a successful find?
A

2

* How can we make the expected running time 0(1)?

* Pick a constant value, resize the array whenever A exceeds that constant
* We'll talk about which constant we should pick later

Load Factor?

k,v
k,v k,v
0 2 5

Load Factor?

kv k,v

k,v k,v

k,v k,v k,v

0 2 5 9

Load Factor?

k;v k,v k’v

k,v k;v k,v k;v

k,v k,v k,v k,v k,v| |k,v| |k,v
0 2 4 5 /7 8 9

Collision Resolution: Linear Probing

* When there’s a collision, use the next open space in the table

Linear Probing: Insert Procedure

* Toinsert k, v
* Calculatei = h(k) % table.length
If table[1i] is occupied then try index (i+1) % table.length
If that is occupied try index (1+2) % table.length
If that is occupied try index (1+3) % table.length

Linear Probing: Find

Linear Probing: Find

* To find key k

* Calculatei = h(k) % table.length
If table[i] is occupied but doesn’t have k, check (i+1) % table.length
If that is occupied and doesn’t contain k, check (i+2) % table.length
If that is occupied and doesn’t contain k, check (i+3) % table.length
Repeat until you either find k or else you reach an empty cell in the table

Linear Probing: Delete

* Suppose A, B, C, D, and E all hashed to 3
* Now let’s delete B

Before: A B C

After:

Linear Probing: Delete

e Suppose A, B, and E all hashed to 3, and Cand D hashed to 5
* Now let’s delete B

Before: A B C D E

After:

Linear Probing: Delete

e Suppose A and E hashed to 3, and B,C, and D hashed to 4
* Now let’s delete B

Before: A B C D E

After:

Linear Probing: Delete

* Let’s do this together!

Linear Probing: Delete

* To delete key k, where h(k) % table.length = i

* Assume it is present
* Beginning at index 1, probe until we find k(call this location index j)

* Mark j as empty (e.g. null), then...
* Challenge: we need to make sure future finds could be successful
* What if there were values that mapped to index i that appeared after j?

* What if there were items that hashed to a value between i and j and
appeared after j due to probing?

Linear Probing: Delete

e Option 1 (harder): Plug the hole with other items in a way that makes
probes behave correctly

* Option 2 (easier): “Tombstone” deletion. Leave a special object that
indicates an something was deleted from there

 The tombstone does not act as an open space when finding (so keep looking

after its reached)

* When inserting you can replace a tombstone with a new item

k,v

k,v

k,v

k,v

0

1

2

3

4

5

6 7 8 9

Linear Probing + Tombstone: Find

* To find key k
* Calculatei = h(k) % table.length
* While table[1] has a key otherthank,seti = (i+1) % table.length
* If you come across k return table[1i]
* |f you come across an empty index, the find was unsuccessful

Linear Probing + Tombstone: Insert

* Toinsert k, v
* Calculatei = h(k) % table.length
* While table[1] has a key otherthank,seti = (i+1) % table.length

* If table[i] has atombstone, setx = i
 That is where we will insert if the find is unsuccessful

* If you come across k, set table[i] = k,v
* If you come across an empty index, the find was unsuccessful

* Set table[x] = k,vif we saw a tombstone
« Set table[x] = k,Vv otherwise

	Slide 1: CSE 332 Winter 2026 Lecture 10: hashing
	Slide 2: Dictionary (Map) ADT
	Slide 3: Dictionary Data Structures
	Slide 4: BSTs and AVL Trees
	Slide 5: Other Tree-based Dictionaries
	Slide 6: Next topic: Hash Tables
	Slide 7: Dictionary (Map) ADT
	Slide 8: The Best Dictionary Data Structure!
	Slide 9: Problem?
	Slide 10: Hash Tables
	Slide 11: Example
	Slide 12: What Influences Running time?
	Slide 13: Properties of a “Good” Hash
	Slide 14: A Bad Hash (and phone number trivia)
	Slide 15: Compare These Hash Functions (for strings)
	Slide 16: Compare These Hash Functions (for strings)
	Slide 17: Ideal Insert procedure
	Slide 18: Collision Resolution
	Slide 19: Separate Chaining Insert
	Slide 20: Separate Chaining Find
	Slide 21: Separate Chaining Delete
	Slide 22: Formal Running Time Analysis
	Slide 23: Formal Running Time Analysis
	Slide 24: Load Factor?
	Slide 25: Load Factor?
	Slide 26: Load Factor?
	Slide 27: Collision Resolution: Linear Probing
	Slide 28: Linear Probing: Insert Procedure
	Slide 29: Linear Probing: Find
	Slide 30: Linear Probing: Find
	Slide 31: Linear Probing: Delete
	Slide 32: Linear Probing: Delete
	Slide 33: Linear Probing: Delete
	Slide 34: Linear Probing: Delete
	Slide 35: Linear Probing: Delete
	Slide 36: Linear Probing: Delete
	Slide 37: Linear Probing + Tombstone: Find
	Slide 38: Linear Probing + Tombstone: Insert

