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Graphs



A graph is a set of vertices connected by edges
● A vertex is also known as a node
● An edge is represented as a pair of vertices
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 unweighted, cyclic graph



● Degree of vertex V
○ Number of edges connected to vertex V
○ In-degree: number of edges going into vertex V
○ Out-degree: number of edges going out of vertex V

● Weight of edge e
○ Numerical value/cost associated with traversing edge e

● Path
○ A sequence of adjacent vertices connected by edges

● Cycle
○ A path that begins and ends at the same vertex

Graph Terminology



Graph Terminology
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● Directed vs. undirected graphs
○ Edges can have direction (i.e. bidirectional vs. unidirectional)

● Weighted vs. unweighted graphs
○ Edges can have weights/costs (e.g. how many minutes to go from vertex A to B)

● Cyclic vs. acyclic graphs
○ Graph contains a cycle
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Graph Traversals



● Depth First Search (DFS)
○ Explores the graph by going as deep as possible
○ Implemented using a stack
○ O(|V| + |E|) runtime

Graph Traversals

Depth First Search (DFS)

Breadth First Search (BFS)

● Breadth First Search (BFS)
○ Explores the graph level by level
○ Implemented using a queue
○ Finds the shortest path in an unweighted, 

acyclic graph
○ O(|V| + |E|) runtime

How do we iterate through a graph?



Depth First Search

DFS(Vertex start):
  initialize stack s to hold start
  mark start as visited

  while s is not empty:
    vertex v = s.pop()

    for each neighbour u of v:
      if u is not visited:
        mark u as visited
        add u to s

● Explores the graph by going as deep as 
possible

● Implemented using a stack
● O(|V| + |E|) runtime

Depth First Search (DFS)



Breadth First Search

BFS(Vertex start):
  initialize queue q to hold start
  mark start as visited

  while q is not empty:
    vertex v = q.dequeue()

    for each neighbour u of v:
      if u is not visited:
        mark u as visited
        predecessor[u] = v
        add u to q

● Explores the graph level by level
● Implemented using a queue
● Finds the shortest path in an unweighted, 

acyclic graph
● O(|V| + |E|) runtime

Breadth First Search (BFS)



Problem 0
DFS(Vertex start):
  initialize stack s to hold start
  mark start as visited

  while s is not empty:
    vertex v = s.pop()

    for each neighbour u of v:
      if u is not visited:
        mark u as visited
        add u to s



Problem 0
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● Initialize stack to hold starting vertex S
● Mark vertex S as visited
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Problem 0
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bottom top 

Vertex Visited?
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● Pop vertex S from the stack
● Push neighbors T, Y onto the stack
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Problem 0
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● Pop vertex Y from the stack
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Problem 0

T X

S T

Z XY

Stack:

bottom top 

Vertex Visited?
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● Pop vertex Z from the stack 
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● Push neighbors onto the stack
(nothing happens since all already visited)
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Problem 0
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(nothing happens since all already visited)
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Problem 0
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bottom top 

Vertex Visited?
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● Pop vertex T from the stack 
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● Push neighbors onto the stack
(nothing happens since all already visited)
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Problem 0
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● Stack is empty; we are done
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Problem 1
BFS(Vertex start):
  initialize queue q to hold start
  mark start as visited

  while q is not empty:
    vertex v = q.dequeue()

    for each neighbour u of v:
      if u is not visited:
        mark u as visited
        predecessor[u] = v
        add u to q



Problem 1

S T

Z XY

Queue:

front back 

● Initialize queue to hold starting vertex S
● Mark vertex S as visited

S

S Vertex Predecessor Visited?
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Z – No

Yes



S T

Z XY

Queue:

front back 

● Dequeue vertex S
● Add neighbors T, Y to the queue
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Problem 1



Y

S T

Z XY

Queue:

front back 

● Dequeue vertex T
● Add neighbors X, Z to the queue

(ignore Y since already visited)
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Problem 1



X Z

S T

Z XY

Queue:

front back 

● Dequeue vertex Y
● Add neighbors to the queue

(nothing happens since all already visited)
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Problem 1



Z
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Queue:

front back 

● Dequeue vertex X
● Add neighbors to the queue

(nothing happens since all already visited)

S

Y

T

Z X

Vertex Predecessor Visited?

S – Yes

T S Yes

X T Yes

Y S Yes

Z T Yes

X

Problem 1



S T

Z XY

Queue:

front back 

● Dequeue vertex Z
● Add neighbors to the queue

(nothing happens since all already visited)
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Problem 1



S T

Z XY

Queue:

front back 

● Queue is empty; we are done
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BFS Table Interpretation



Vertex Predecessor Visited?

S – Yes

T S Yes

X T Yes

Y S Yes

Z T Yes

BFS Table Interpretation

● A path exists if and only if the target node 
has a predecessor in the table

How to find a path from the start node to a target 
node?

● Locate the target node in the table
● Backtrack through its predecessors until you 

reach the start node
● The sequence of predecessors form a path 

from the start to the target
● Will be the shortest path by edge count 

(but not necessarily sum of edge costs)

How to check if a path exists from the start 
node to a target node?



BFS/DFS Useful Properties



BFS - Shortest Path

● BFS always returns the shortest path from 
source to any other vertex by edge 
count! 

● Intuition: 
○ Each step push neighbors that are one 

edge away, onto a queue. 
○ Because we use a queue, we must 

process the vertices 1 edge away, 
before vertices farther away

○ Each vertex’s predecessor in the table 
is the one which initially pushes it onto 
the stack (earliest/shortest path)



DFS - Finding Cycles

● DFS can be used to detect cycles!
● Intuition:

○ DFS tells us to keep moving along a 
chosen path until we hit a “dead-end”

○ If the “dead-end” is a null pointer (e.g. 
no more children/neighbors), no cycle

○ If the “dead-end” is a visited node, the 
path is a cycle!



Dijkstra’s Algorithm
(Shortest Path)



Dijkstra(Vertex source):
  for each vertex v:
    set v.cost = infinity
    mark v as unvisited

  set source.cost = 0

  while exist unvisited vertices:
    select unvisited vertex v with lowest cost
    mark v as visited

    for each edge (v, u) with weight w:
      if u is not visited:
        potentialBest = v.cost + w  // cost of best path to u through v
        currBest = u.cost           // cost of current best path to u

        if (potentialBest < currBest):
          u.cost = potentialBest
          u.pred = v

Dijkstra’s Algorithm

Dijkstra’s algorithm finds the minimum-cost 
path from a source vertex to every other 
vertex in a non-negatively weighted 
graph
● O(|V| log |V| + |E| log |V|) runtime



Problem 2

Dijkstra(Vertex source):
  for each vertex v:
    set v.cost = infinity
    mark v as unvisited

  set source.cost = 0

  while exist unvisited vertices:
    select unvisited vertex v with lowest cost
    mark v as visited

    for each edge (v, u) with weight w:
      if u is not visited:
        potentialBest = v.cost + w
        currBest = u.cost

        if (potentialBest < currBest):
          u.cost = potentialBest
          u.pred = v



Problem 2

Vertex Visited? Cost Predecessor
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● Initialize each vertex as unvisited with cost ∞
● Set cost of source vertex A to 0

∞

∞

∞

∞

∞

∞

0No

No

No

No

No

No



Problem 2
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Vertex Visited? Cost Predecessor

A No 0 –

B No ∞ –

C No ∞ –

D No ∞ –

E No ∞ –

F No ∞ –

● Select unvisited vertex with lowest cost (A)

Yes

● Mark A as visited
● Process each outgoing edge
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Problem 2
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Vertex Visited? Cost Predecessor

A Yes 0 –

B No  ∞  8 A

C No  ∞  16 A

D No  ∞  50 A

E No  ∞  13 A

F No  ∞  1 AYes

A
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 ∞ 13  4

● Select unvisited vertex with lowest cost (F)
● Mark F as visited
● Process each outgoing edge

 A  F



Problem 2
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Vertex Visited? Cost Predecessor

A Yes 0 –

B No  ∞  8 A

C No  ∞  16 A

D No  ∞  50 A

E No  ∞ 13  4  A  F

F Yes  ∞  1 A

E
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● Select unvisited vertex with lowest cost (E)
● Mark E as visited
● Process each outgoing edge

F

 A  E



Problem 2

F

A D

CB

E

1

3

5

28
16

13

13

50

6

3

7

Vertex Visited? Cost Predecessor

A Yes 0 –

B No  ∞  8 A

C No  ∞  16 A

D No  ∞ 50  9  A  E

E Yes  ∞ 13  4  A  F

F Yes  ∞  1 AB

Yes
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● Select unvisited vertex with lowest cost (B)
● Mark B as visited
● Process each outgoing edge

F E

● No outgoing edges; continue



Problem 2
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Vertex Visited? Cost Predecessor

A Yes 0 –

B Yes  ∞  8 A

C No  ∞  16 A

D No  ∞ 50  9  A  E
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● Select unvisited vertex with lowest cost (D)
● Mark D as visited
● Process each outgoing edge

(ignore D→B since B is already visited)
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Problem 2
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Vertex Visited? Cost Predecessor

A Yes 0 –

B Yes  ∞  8 A

C No  ∞ 16  11  A  D

D Yes  ∞ 50  9  A  E

E Yes  ∞ 13  4  A  F

F Yes  ∞  1 AC

YesA

● Select unvisited vertex with lowest cost (C)
● Mark C as visited
● Process each outgoing edge

(ignore C→B & C→E since B & E are already visited)
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● No outgoing edges to unvisited nodes; continue

3



Problem 2
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Vertex Visited? Cost Predecessor

A Yes 0 –

B Yes  ∞  8 A

C No  ∞ 16  11  A  D

D Yes  ∞ 50  9  A  E

E Yes  ∞ 13  4  A  F

F Yes  ∞  1 A

YesA
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● No more unvisited nodes; we are done



Problem 3

Dijkstra(Vertex source):
  for each vertex v:
    set v.cost = infinity
    mark v as unvisited

  set source.cost = 0

  while exist unvisited vertices:
    select unvisited vertex v with lowest cost
    mark v as visited

    for each edge (v, u) with weight w:
      if u is not visited:
        potentialBest = v.cost + w
        currBest = u.cost

        if (potentialBest < currBest):
          u.cost = potentialBest
          u.pred = v



Problem 3

Vertex Visited? Cost Predecessor
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● Initialize each vertex as unvisited with cost ∞
● Set cost of source vertex A to 0
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Problem 3
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● Initialize each vertex as unvisited with cost ∞
● Set cost of source vertex A to 0

Vertex Visited? Cost of Path Pred

a True 0

b True ∞ 05 a

c True ∞ 80 08 a b

d True ∞ 90 03 a c

e True ∞ 60 13 a d

f True ∞ 04 a

Order added to known set: a, f, b, c, d, e



Thank You!


