UHATCHYA DONG?

Graphs GRAPH THEORY
CSE 332 - Section 6
Slides by James Richie Sulaeman

A graph is a set of vertices connected by edges
e A vertex is also known as a node
e An edge is represented as a pair of vertices

A

ey

D

.

E T F edges

example of a undirected,
unweighted, cyclic graph

Graph Terminology

e Degree of vertex V
o Number of edges connected to vertex V
o In-degree: number of edges going into vertex V
o Qut-degree: number of edges going out of vertex V
e Weight of edge e
o Numerical value/cost associated with traversing edge e

e Path
o A seqguence of adjacent vertices connected by edges
e Cycle

o A path that begins and ends at the same vertex

Graph Terminology

e Directed vs. undirected graphs

o Edges can have direction (i.e. bidirectional vs. unidirectional)
e Weighted vs. unweighted graphs

o Edges can have weights/costs (e.g. how many minutes to go from vertex A to B)
e Cyclic vs. acyclic graphs

o Graph contains a cycle

Y\ Y) / N\ /N

directed, unweighted, acyclic graph directed, weighted, cyclic graph undirected, unweighted, acyclic graph undirected, weighted, cyclic graph

A

Graph Trav

Graph Traversals

How do we iterate through a graph?

Depth First Search (DFS)

(@)

(@)

(@)

Explores the graph by going as deep as possible
Implemented using a stack
O(|V] + |E|) runtime

Breadth First Search (BFS)

©)

©)

©)

Explores the graph level by level
Implemented using a queue

Finds the shortest path in an unweighted,
acyclic graph

O(|V] + |E|) runtime

e
n’ I

Depth First Search (DFS)

=
[S/ \

- 02090) 00)

Breadth First Search (BFS)

Depth First Search

DFS (Vertex start):
initialize stack s to hold start
mark start as visited

while s is not empty:
vertex v = s.pop ()

for each neighbour u of v:
if u is not visited:
mark u as visited
add u to s

Explores the graph by going as deep as
possible

Implemented using a stack

O(|V] + |E|) runtime

.
ne I

Depth First Search (DFS)

Breadth First Search

BFS (Vertex start): e Explores the graph level by level
initialize queue g to hold start Implemented using a queue
e Finds the shortest path in an unweighted,
acyclic graph
e ((|V]+ |E|) runtime

mark start as visited

while g is not empty:
vertex v = g.dequeue ()

for each neighbour u of v:
if u is not visited:

mark u as visited

predecessor[u] = v 5;55& \\\\\
IEEE——)

T M/\

L I YRR 2

Breadth First Search (BFS)

Problem O

DFS (Vertex start):
initialize stack s to hold start
mark start as wvisited

while s is not empty:
vertex v = s.pop ()

for each neighbour

mark u as

Problem O

S
S Yes
T No
X No
Y Z ——— X
\/ Y NO
Z No
Stack:
s e Initialize stack to hold starting vertex S

e Mark vertex S as visited

bottom top

Problem O

S Yes

T Yes
X No
Y Z — X
\/ Y Yes
Y4 No
Stack:
T v e Pop vertex S from the stack

e Push neighbors T, Y onto the stack

bottom top

Problem O

S
S Yes
T Yes
X Yes

/ ———— X
Y Yes
Z Yes
Stack:
tack
T X . e Pop vertex Y from the stac

e Push neighbors X, Z onto the stack

bottom top

Problem O

—
S Yes
T Yes
X Yes
Y X
\/ Y Yes
Z Yes
Stack:
T X e Pop vertex Z from the stack

e Push neighbors onto the stack
(nothing happens since all already visited)

bottom top

Problem O

S Yes
T Yes
X Yes
Y Yes
Z Yes
Stack:
T e Pop vertex X from the stack

e Push neighbors onto the stack
(nothing happens since all already visited)

bottom top

Problem O

S Yes

T Yes
X Yes
Y / —— X
\/ Y Yes
Z Yes
Stack:

e Pop vertex T from the stack

e Push neighbors onto the stack
(nothing happens since all already visited)

bottom top

Problem O

S
S Yes
T Yes
X Yes
Y / — X
\/ Y Yes
Z Yes
Stack:

e Stack is empty; we are done

bottom top

Problem 1

BFS (Vertex start):
initialize queue q to hold start
mark start as visited

while q is not empty:
vertex v = g.dequeue ()

for each neighbour u of v:
if u is not visited:
mark u as visited
predecessoru] = v
add u to ¢gq

Problem 1

S
S - Yes
T - No
X - No
Y Z ——— X
\/ Y - No
Z - No
Queue:
s e Initialize queue to hold starting vertex S

e Mark vertex S as visited
front back

Problem 1

S - Yes

T S Yes
X - No
Y Z — X
\/ Y S Yes
Z - No
Queue:
- y e Dequeue vertex S

e Add neighbors T, Y to the queue

front back

Problem 1

;
S - Yes
T S Yes
X T Yes

Y / ——— X

\/ Y S Yes
Z T Yes
Queue:
v X . e Dequeue vertex T

e Add neighbors X, Z to the queue

front peck (ignore Y since already visited)

Problem 1

S
S - Yes
T S Yes
X T Yes

/ ——— X
Y S Yes
Z T Yes
Queue:
X 2 e Dequeue vertex Y

e Add neighbors to the queue

front ek (nothing happens since all already visited)

Problem 1

S - Yes
T S Yes
X T Yes
Y S Yes
Z T Yes
Queue:
. e Dequeue vertex X

e Add neighbors to the queue

front ek (nothing happens since all already visited)

Problem 1

S
S - Yes
T S Yes
X T Yes
Y X
\/ Y S Yes
Z T Yes
Queue:

e Dequeue vertex Z
e Add neighbors to the queue
(nothing happens since all already visited)

front back

Problem 1

S
S - Yes
T S Yes
X T Yes
Y / —— X
\/ Y S Yes
Z T Yes
Queue:

e Queue is empty; we are done

front back

BFS Table Inter

BFS Table Interpretation

How to check if a path exists from the start

node to a target node?

e A path exists if and only if the target node S - ves

has a predecessor in the table T S Yes

How to find a path from the start node to a target X T Yes
node?

e Locate the target node in the table Y S Yes

e Backtrack through its predecessors until you 2 - Ves

reach the start node

e The sequence of predecessors form a path
from the start to the target

e Will be the shortest path by edge count
(but not necessarily sum of edge costs)

BFS/DFS Usefu

BFS - Shortest Path

e BFS always returns the shortest path from
source to any other vertex by edge
count!

e Intuition:

o Each step push neighbors that are one
edge away, onto a queue.

o Because we use a queue, we must
process the vertices 1 edge away,
before vertices farther away

o Each vertex’s predecessor in the table
is the one which initially pushes it onto
the stack (earliest/shortest path)

DFS - Finding Cycles

e DFS can be used to detect cycles!
e Intuition:

o

DFS tells us to keep moving along a
chosen path until we hit a “dead-end”
If the “dead-end” is a null pointer (e.g.
no more children/neighbors), no cycle
If the “dead-end” is a visited node, the
path is a cycle!

Dijkstra’s Algori
(Shortest P

Dijkstra’s Algorithm

Dijkstra (Vertex source) :
for each vertex v:
set v.cost = infinity

mark v as unvisited
set source.cost = 0

while exist unvisited vertices:
select unvisited vertex v with lowest cost

mark v as visited

for each edge (v, u) with weight w:
if u is not visited:
potentialBest = v.cost + w

currBest = u.cost

if (potentialBest < currBest):
u.cost = potentialBest

u.pred v

Dijkstra’s algorithm finds the minimum-cost
path from a source vertex to every other
vertex in a non-negatively weighted
graph

e ((|V]log|V]| + |E| log |V]) runtime

// cost of best path to u through v
// cost of current best path to u

Dijkstra (Vertex source):
for each vertex v:
set v.cost = infinity
mark v as unvisited

set source.cost = 0

while exist unvisited vertices:
select unvisited vertex v with lowest cost

Problem 2 mark v as visited

for each edge (v, u) with weight w:
if u is not visited:
potentialBest = v.cost + w
currBest = u.cost

if (potentialBest < currBest):
u.cost = potentialBest
u.pred = v

e |nitialize each vertex as unvisited with cost «
PrObIem 2 e Set cost of source vertex Ato 0

3
A No 0 -

1 13 5

B No) -
|13 50 3

A > D C No oo -
16 6 b No > -

8 2
E No) -
B < C F No oo -

e Select unvisited vertex with lowest cost (A)

Problem 2 e Mark A as visited

e Process each outgoing edge

3
F - E Vertex Visited? Cost Predecessor

A Yes 0 -

] 13 5
B No -8 A

13 50 3

> D C No - 16 A

8 2
E No - 13 A
B -~ - C F No -1 A

e Select unvisited vertex with lowest cost (F)

Problem 2 e Mark F as visited

e Process each outgoing edge

A Yes 0 -

B No —~- 8 A
C No ~- 16 A
D No -~ 50 A
E No -3 4 A F

F Yes oo 1 A

e Select unvisited vertex with lowest cost (E)

Problem 2 e Mark E as visited

e Process each outgoing edge

A Yes 0 -

B No —- 8 A
C No - 16 A
D No --56-9 A-E
E Yes ~43-4 A F
B - C F Yes oo 1 A

Select unvisited vertex with lowest cost (B)
Mark B as visited

Process each outgoing edge

No outgoing edges; continue

Problem 2

1 13 I 5 A Yes 0 -
B Yes -8 A
C No —~o- 16 A
D No ~50-9 AE
E Yes 13-4 A F

F Yes oo 1 A

Select unvisited vertex with lowest cost (D)

Problem 2 e Mark D as visited

Process each outgoing edge
(ignore D—B since B is already visited)

A Yes 0 -

B Yes -8 A
C No ~—36- 11 A D
D Yes -=50-9 -+ E
E Yes ~43-4 A F
B C F Yes Baall A

e Select unvisited vertex with lowest cost (C)
e Mark C as visited
PrObIem 2 e Process each outgoing edge
(ignore C—B & C—E since B & E are already visited)
e No outgoing edges to unvisited nodes; continue

3
4 A Ye 0
es -
1 13 5
B Yes - 8 A
C Yes —-36- 11 A-D
D Yes -=50-9 A E
E Yes 13-4 A F

F Yes oo 1 A

Problem 2 e No more unvisited nodes; we are done

3
A Yes 0 -

1 13 5
B Yes -~ 8 A
13 50 3
A » D C Yes 46~ 11 D
8 2
E Yes 13- 4 A F
B -~ C F Yes o1 A

Dijkstra (Vertex source):
for each vertex v:
set v.cost = infinity
mark v as unvisited

set source.cost = 0

while exist unvisited vertices:
select unvisited vertex v with lowest cost

Problem 3 mark v as visited

for each edge (v, u) with weight w:
if u is not visited:
potentialBest = v.cost + w
currBest = u.cost

if (potentialBest < currBest):
u.cost = potentialBest
u.pred = v

e |nitialize each vertex as unvisited with cost «
PrObIem 3 e Set cost of source vertex Ato 0

3
:
A No 0 -

- C
5 / -5
B No oo -
- D

C No o0 -

60 6 D No o0 -
4 10
E No o0 -

F = E F No oo -

e |nitialize each vertex as unvisited with cost «
PrObIem 3 e Set cost of source vertex Ato 0

3
B » C Vertex Visited? | Cost of Path Pred
a True 0
5 80 5
b True = 05 a
0 90 c True |=86 08 ab
A - D
\ d True =96 03 ac
60 6 -
4 10 e True 66 13 ad
f True = 04 a
F o= E
7

Order added to known set: a,f, b, c, d, e

