
Graphs
CSE 332 – Section 6

Slides by James Richie Sulaeman

Graphs

A graph is a set of vertices connected by edges
● A vertex is also known as a node
● An edge is represented as a pair of vertices

Graphs

A

D
B

E
F

C

vertices

edges

example of a undirected,
 unweighted, cyclic graph

● Degree of vertex V
○ Number of edges connected to vertex V
○ In-degree: number of edges going into vertex V
○ Out-degree: number of edges going out of vertex V

● Weight of edge e
○ Numerical value/cost associated with traversing edge e

● Path
○ A sequence of adjacent vertices connected by edges

● Cycle
○ A path that begins and ends at the same vertex

Graph Terminology

Graph Terminology

B C

A

B C

A

B C

A

directed, weighted, cyclic graphdirected, unweighted, acyclic graph undirected, unweighted, acyclic graph

B C

A

undirected, weighted, cyclic graph

● Directed vs. undirected graphs
○ Edges can have direction (i.e. bidirectional vs. unidirectional)

● Weighted vs. unweighted graphs
○ Edges can have weights/costs (e.g. how many minutes to go from vertex A to B)

● Cyclic vs. acyclic graphs
○ Graph contains a cycle

5

3 7
1

3

5

7

Graph Traversals

● Depth First Search (DFS)
○ Explores the graph by going as deep as possible
○ Implemented using a stack
○ O(|V| + |E|) runtime

Graph Traversals

Depth First Search (DFS)

Breadth First Search (BFS)

● Breadth First Search (BFS)
○ Explores the graph level by level
○ Implemented using a queue
○ Finds the shortest path in an unweighted,

acyclic graph
○ O(|V| + |E|) runtime

How do we iterate through a graph?

Depth First Search

DFS(Vertex start):
 initialize stack s to hold start
 mark start as visited

 while s is not empty:
 vertex v = s.pop()

 for each neighbour u of v:
 if u is not visited:
 mark u as visited
 add u to s

● Explores the graph by going as deep as
possible

● Implemented using a stack
● O(|V| + |E|) runtime

Depth First Search (DFS)

Breadth First Search

BFS(Vertex start):
 initialize queue q to hold start
 mark start as visited

 while q is not empty:
 vertex v = q.dequeue()

 for each neighbour u of v:
 if u is not visited:
 mark u as visited
 predecessor[u] = v
 add u to q

● Explores the graph level by level
● Implemented using a queue
● Finds the shortest path in an unweighted,

acyclic graph
● O(|V| + |E|) runtime

Breadth First Search (BFS)

Problem 0
DFS(Vertex start):
 initialize stack s to hold start
 mark start as visited

 while s is not empty:
 vertex v = s.pop()

 for each neighbour u of v:
 if u is not visited:
 mark u as visited
 add u to s

Problem 0

S T

Z XY

Stack:

bottom top

Vertex Visited?

S No

T No

X No

Y No

Z No

● Initialize stack to hold starting vertex S
● Mark vertex S as visited

Yes

S

S

Problem 0

S T

Z XY

Stack:

bottom top

Vertex Visited?

S Yes

T No

X No

Y No

Z No

● Pop vertex S from the stack
● Push neighbors T, Y onto the stack

T

Yes

Yes

S

Y

T Y

Problem 0

T

S T

Z XY

Stack:

bottom top

Vertex Visited?

S Yes

T Yes

X No

Y Yes

Z No

● Pop vertex Y from the stack
● Push neighbors X, Z onto the stack

Z

Yes

X

S

Y

T

Y
Yes

X

Z

Problem 0

T X

S T

Z XY

Stack:

bottom top

Vertex Visited?

S Yes

T Yes

X Yes

Y Yes

Z Yes

● Pop vertex Z from the stack

S

Y

T

Z X

● Push neighbors onto the stack
(nothing happens since all already visited)

Z

Problem 0

T

S T

Z XY

Stack:

bottom top

Vertex Visited?

S Yes

T Yes

X Yes

Y Yes

Z Yes

● Pop vertex X from the stack

S

Y

T

Z X

● Push neighbors onto the stack
(nothing happens since all already visited)

X

Problem 0

S T

Z XY

Stack:

bottom top

Vertex Visited?

S Yes

T Yes

X Yes

Y Yes

Z Yes

● Pop vertex T from the stack

S

Y

T

Z X

● Push neighbors onto the stack
(nothing happens since all already visited)

T

Problem 0

S T

Z XY

Stack:

bottom top

Vertex Visited?

S Yes

T Yes

X Yes

Y Yes

Z Yes

● Stack is empty; we are done

S

Z X

T

Y Z X

Problem 1
BFS(Vertex start):
 initialize queue q to hold start
 mark start as visited

 while q is not empty:
 vertex v = q.dequeue()

 for each neighbour u of v:
 if u is not visited:
 mark u as visited
 predecessor[u] = v
 add u to q

Problem 1

S T

Z XY

Queue:

front back

● Initialize queue to hold starting vertex S
● Mark vertex S as visited

S

S Vertex Predecessor Visited?

S – No

T – No

X – No

Y – No

Z – No

Yes

S T

Z XY

Queue:

front back

● Dequeue vertex S
● Add neighbors T, Y to the queue

T

S

Y

TS Vertex Predecessor Visited?

S – Yes

T – No

X – No

Y – No

Z – No

Y

Yes

S

S

Yes

Problem 1

Y

S T

Z XY

Queue:

front back

● Dequeue vertex T
● Add neighbors X, Z to the queue

(ignore Y since already visited)

S

Y

T

Z X

Vertex Predecessor Visited?

S – Yes

T S Yes

X – No

Y S Yes

Z – NoYes

X

T

YesT

T

Z

Problem 1

X Z

S T

Z XY

Queue:

front back

● Dequeue vertex Y
● Add neighbors to the queue

(nothing happens since all already visited)

S

Y

T

Z XY

Vertex Predecessor Visited?

S – Yes

T S Yes

X T Yes

Y S Yes

Z T Yes

Problem 1

Z

S T

Z XY

Queue:

front back

● Dequeue vertex X
● Add neighbors to the queue

(nothing happens since all already visited)

S

Y

T

Z X

Vertex Predecessor Visited?

S – Yes

T S Yes

X T Yes

Y S Yes

Z T Yes

X

Problem 1

S T

Z XY

Queue:

front back

● Dequeue vertex Z
● Add neighbors to the queue

(nothing happens since all already visited)

S

Y

T

Z X

Vertex Predecessor Visited?

S – Yes

T S Yes

X T Yes

Y S Yes

Z T Yes

Z

Problem 1

S T

Z XY

Queue:

front back

● Queue is empty; we are done

S

Y

T

Z X

Vertex Predecessor Visited?

S – Yes

T S Yes

X T Yes

Y S Yes

Z T Yes

Problem 1

BFS Table Interpretation

Vertex Predecessor Visited?

S – Yes

T S Yes

X T Yes

Y S Yes

Z T Yes

BFS Table Interpretation

● A path exists if and only if the target node
has a predecessor in the table

How to find a path from the start node to a target
node?

● Locate the target node in the table
● Backtrack through its predecessors until you

reach the start node
● The sequence of predecessors form a path

from the start to the target
● Will be the shortest path by edge count

(but not necessarily sum of edge costs)

How to check if a path exists from the start
node to a target node?

BFS/DFS Useful Properties

BFS - Shortest Path

● BFS always returns the shortest path from
source to any other vertex by edge
count!

● Intuition:
○ Each step push neighbors that are one

edge away, onto a queue.
○ Because we use a queue, we must

process the vertices 1 edge away,
before vertices farther away

○ Each vertex’s predecessor in the table
is the one which initially pushes it onto
the stack (earliest/shortest path)

DFS - Finding Cycles

● DFS can be used to detect cycles!
● Intuition:

○ DFS tells us to keep moving along a
chosen path until we hit a “dead-end”

○ If the “dead-end” is a null pointer (e.g.
no more children/neighbors), no cycle

○ If the “dead-end” is a visited node, the
path is a cycle!

Dijkstra’s Algorithm
(Shortest Path)

Dijkstra(Vertex source):
 for each vertex v:
 set v.cost = infinity
 mark v as unvisited

 set source.cost = 0

 while exist unvisited vertices:
 select unvisited vertex v with lowest cost
 mark v as visited

 for each edge (v, u) with weight w:
 if u is not visited:
 potentialBest = v.cost + w // cost of best path to u through v
 currBest = u.cost // cost of current best path to u

 if (potentialBest < currBest):
 u.cost = potentialBest
 u.pred = v

Dijkstra’s Algorithm

Dijkstra’s algorithm finds the minimum-cost
path from a source vertex to every other
vertex in a non-negatively weighted
graph
● O(|V| log |V| + |E| log |V|) runtime

Problem 2

Dijkstra(Vertex source):
 for each vertex v:
 set v.cost = infinity
 mark v as unvisited

 set source.cost = 0

 while exist unvisited vertices:
 select unvisited vertex v with lowest cost
 mark v as visited

 for each edge (v, u) with weight w:
 if u is not visited:
 potentialBest = v.cost + w
 currBest = u.cost

 if (potentialBest < currBest):
 u.cost = potentialBest
 u.pred = v

Problem 2

Vertex Visited? Cost Predecessor

A –

B –

C –

D –

E –

F –

F

A D

CB

E

1

3

5

28
16

13

13

50

6

3

7

● Initialize each vertex as unvisited with cost ∞
● Set cost of source vertex A to 0

∞

∞

∞

∞

∞

∞

0No

No

No

No

No

No

Problem 2

F

A D

CB

E

1

3

5

28
16

13

13

50

6

3

7

A

1

8
16

13

50

Vertex Visited? Cost Predecessor

A No 0 –

B No ∞ –

C No ∞ –

D No ∞ –

E No ∞ –

F No ∞ –

● Select unvisited vertex with lowest cost (A)

Yes

● Mark A as visited
● Process each outgoing edge

 ∞ 8

 ∞ 16

 ∞ 50

 ∞ 13

 ∞ 1

A

A

A

A

A

Problem 2

F

A D

CB

E

1

3

5

28
16

13

13

50

6

3

7

3

13

Vertex Visited? Cost Predecessor

A Yes 0 –

B No ∞ 8 A

C No ∞ 16 A

D No ∞ 50 A

E No ∞ 13 A

F No ∞ 1 AYes

A

F

 ∞ 13 4

● Select unvisited vertex with lowest cost (F)
● Mark F as visited
● Process each outgoing edge

 A F

Problem 2

F

A D

CB

E

1

3

5

28
16

13

13

50

6

3

7

5

Vertex Visited? Cost Predecessor

A Yes 0 –

B No ∞ 8 A

C No ∞ 16 A

D No ∞ 50 A

E No ∞ 13 4 A F

F Yes ∞ 1 A

E

 ∞ 50 9

Yes

A

● Select unvisited vertex with lowest cost (E)
● Mark E as visited
● Process each outgoing edge

F

 A E

Problem 2

F

A D

CB

E

1

3

5

28
16

13

13

50

6

3

7

Vertex Visited? Cost Predecessor

A Yes 0 –

B No ∞ 8 A

C No ∞ 16 A

D No ∞ 50 9 A E

E Yes ∞ 13 4 A F

F Yes ∞ 1 AB

Yes

A

● Select unvisited vertex with lowest cost (B)
● Mark B as visited
● Process each outgoing edge

F E

● No outgoing edges; continue

Problem 2

F

A D

CB

E

1

3

5

28
16

13

13

50

6

3

7

2

Vertex Visited? Cost Predecessor

A Yes 0 –

B Yes ∞ 8 A

C No ∞ 16 A

D No ∞ 50 9 A E

E Yes ∞ 13 4 A F

F Yes ∞ 1 A

D

Yes

 A DA

● Select unvisited vertex with lowest cost (D)
● Mark D as visited
● Process each outgoing edge

(ignore D→B since B is already visited)

F E

B

 ∞ 16 11

6

Problem 2

F

A D

CB

E

1

3

5

28
16

13

13

50

6

3

77

Vertex Visited? Cost Predecessor

A Yes 0 –

B Yes ∞ 8 A

C No ∞ 16 11 A D

D Yes ∞ 50 9 A E

E Yes ∞ 13 4 A F

F Yes ∞ 1 AC

YesA

● Select unvisited vertex with lowest cost (C)
● Mark C as visited
● Process each outgoing edge

(ignore C→B & C→E since B & E are already visited)

F E

B

D

● No outgoing edges to unvisited nodes; continue

3

Problem 2

F

A D

CB

E

1

3

5

28
16

13

13

50

6

3

7

Vertex Visited? Cost Predecessor

A Yes 0 –

B Yes ∞ 8 A

C No ∞ 16 11 A D

D Yes ∞ 50 9 A E

E Yes ∞ 13 4 A F

F Yes ∞ 1 A

YesA

F E

B

D

C

● No more unvisited nodes; we are done

Problem 3

Dijkstra(Vertex source):
 for each vertex v:
 set v.cost = infinity
 mark v as unvisited

 set source.cost = 0

 while exist unvisited vertices:
 select unvisited vertex v with lowest cost
 mark v as visited

 for each edge (v, u) with weight w:
 if u is not visited:
 potentialBest = v.cost + w
 currBest = u.cost

 if (potentialBest < currBest):
 u.cost = potentialBest
 u.pred = v

Problem 3

Vertex Visited? Cost Predecessor

A –

B –

C –

D –

E –

F –

B

A D

EF

C

5

3

-5

104
60

70

80

90

6

7

● Initialize each vertex as unvisited with cost ∞
● Set cost of source vertex A to 0

∞

∞

∞

∞

∞

∞

0No

No

No

No

No

No

Problem 3

B

A D

EF

C

5

3

-5

104
60

70

80

90

6

7

● Initialize each vertex as unvisited with cost ∞
● Set cost of source vertex A to 0

Vertex Visited? Cost of Path Pred

a True 0

b True ∞ 05 a

c True ∞ 80 08 a b

d True ∞ 90 03 a c

e True ∞ 60 13 a d

f True ∞ 04 a

Order added to known set: a, f, b, c, d, e

Thank You!

