
Hashing
CSE 332 – Section 5

Slides by James Richie Sulaeman

Announcements

● Midterm Next Week! Mon Feb 10, 5:30pm in BAG 154 and 131 (we will let you know

which room to go to)

○ Covers everything up to and including AVL Trees (no hashing or sorting)

○ Check the bottom of the Exams section of the course website for past exams

○ Review session on Friday 2/07 during both lecture sections

○ Come to office hours if you have questions about anything!

https://courses.cs.washington.edu/courses/cse332/25wi/exams/exams.html

Hashing

A collision occurs when two keys map onto the same location in a hash table.
● This is impossible to eliminate since the number of possible keys exceeds table size.

Collision Resolution

There are multiple ways to resolve conflicts:
● Separate Chaining

○ All elements with keys that map to the same table location are kept in a linked list.
● Open Addressing

○ If the slot is full, we probe the next slot.
○ On the ith probe, we check the slot with index (h(key) + f(i)) % TableSize.

- Linear Probing: f(i) = i
- Quadrating Probing: f(i) = i

2

- Double Hashing: f(i) = i ᐧ g(key)

Problem 1a
Linear Probing

 ith probe: (h(key) + i) % TableSize

Insert 7, 9, 48, 8, 37, 57 into an empty table.

Problem 1a Linear Probing
ith probe: (h(key) + i) % TableSize

0

1

2

3

4

5

6

7

8

9

● (h(7) + 0) % 10 = 7

Insert 7, 9, 48, 8, 37, 57 into an empty table.

Problem 1a Linear Probing
ith probe: (h(key) + i) % TableSize

0

1

2

3

4

5

6

7

8

9

7

● (h(9) + 0) % 10 = 9

Insert 7, 9, 48, 8, 37, 57 into an empty table.

Problem 1a Linear Probing
ith probe: (h(key) + i) % TableSize

0

1

2

3

4

5

6

7 7

8

9 9

● (h(48) + 0) % 10 = 8

Insert 7, 9, 48, 8, 37, 57 into an empty table.

Problem 1a Linear Probing
ith probe: (h(key) + i) % TableSize

0

1

2

3

4

5

6

7 7

8

9 9

48

● (h(8) + 0) % 10 = 8

Insert 7, 9, 48, 8, 37, 57 into an empty table.

Problem 1a Linear Probing
ith probe: (h(key) + i) % TableSize

0

1

2

3

4

5

6

7 7

8 48

9 9

● (h(8) + 1) % 10 = 9
● (h(8) + 2) % 10 = 0

8

● (h(37) + 0) % 10 = 7

Insert 7, 9, 48, 8, 37, 57 into an empty table.

Problem 1a Linear Probing
ith probe: (h(key) + i) % TableSize

0 8

1

2

3

4

5

6

7 7

8 48

9 9

● (h(37) + 1) % 10 = 8
● (h(37) + 2) % 10 = 9
● (h(37) + 3) % 10 = 0
● (h(37) + 4) % 10 = 1

37

● (h(57) + 0) % 10 = 7

Insert 7, 9, 48, 8, 37, 57 into an empty table.

Problem 1a Linear Probing
ith probe: (h(key) + i) % TableSize

0 8

1 37

2

3

4

5

6

7 7

8 48

9 9

● (h(57) + 1) % 10 = 8
● (h(57) + 2) % 10 = 9
● (h(57) + 3) % 10 = 0
● (h(57) + 4) % 10 = 1

57

● (h(57) + 5) % 10 = 2

Delete 37, 7, 57 from the table.

Problem 1a Linear Probing
ith probe: (h(key) + i) % TableSize

0 8

1 37

2 57

3

4

5

6

7 7

8 48

9 9

Delete 37, 7, 57 from the table.

● (h(37) + 0) % 10 = 7

Problem 1a Linear Probing
ith probe: (h(key) + i) % TableSize

0 8

1 37

2 57

3

4

5

6

7 7

8 48

9 9

● (h(37) + 1) % 10 = 8
● (h(37) + 2) % 10 = 9
● (h(37) + 3) % 10 = 0
● (h(37) + 4) % 10 = 1

DELETEDDelete 37, 7, 57 from the table.

● (h(7) + 0) % 10 = 7

Problem 1a Linear Probing
ith probe: (h(key) + i) % TableSize

0 8

1 DELETED

2 57

3

4

5

6

7 7

8 48

9 9

DELETED

Delete 37, 7, 57 from the table.

● (h(57) + 0) % 10 = 7

Problem 1a Linear Probing
ith probe: (h(key) + i) % TableSize

0 8

1 DELETED

2 57

3

4

5

6

7 DELETED

8 48

9 9

● (h(57) + 1) % 10 = 8
● (h(57) + 2) % 10 = 9
● (h(57) + 3) % 10 = 0
● (h(57) + 4) % 10 = 1

DELETED

● (h(57) + 5) % 10 = 2

Delete 37, 7, 57 from the table.

Experiment
What happens if we now try to remove a

non-existent element (e.g. 17) from the table?

● (h(17) + 0) % 10 = 7

Experiment Linear Probing
ith probe: (h(key) + i) % TableSize

0 8

1 DELETED

2 DELETED

3

4

5

6

7 DELETED

8 48

9 9

● (h(17) + 1) % 10 = 8
● (h(17) + 2) % 10 = 9
● (h(17) + 3) % 10 = 0
● (h(17) + 4) % 10 = 1
● (h(17) + 5) % 10 = 2

Delete 17 from the table.

● (h(17) + 6) % 10 = 3
We have reached an empty slot, but have not
encountered 17. Therefore, it must not exist.

Problem 1b
Quadratic Probing

 ith probe: (h(key) + i

2) % TableSize

Problem 1b Quadratic Probing
ith probe: (h(key) + i

2) % TableSize

0

1

2

3

4

5

6

7

8

9

Insert 7, 9, 48, 8, 37, 57 into an empty table.

● (h(7) + 02) % 10 = 7

Problem 1b Quadratic Probing
ith probe: (h(key) + i

2) % TableSize

0

1

2

3

4

5

6

7

8

9

Insert 7, 9, 48, 8, 37, 57 into an empty table.

7

● (h(9) + 02) % 10 = 9

Problem 1b Quadratic Probing
ith probe: (h(key) + i

2) % TableSize

0

1

2

3

4

5

6

7 7

8

9 9

Insert 7, 9, 48, 8, 37, 57 into an empty table.

● (h(48) + 02) % 10 = 8

Problem 1b Quadratic Probing
ith probe: (h(key) + i

2) % TableSize

0

1

2

3

4

5

6

7 7

8

9 9

48

Insert 7, 9, 48, 8, 37, 57 into an empty table.

● (h(8) + 02) % 10 = 8

Problem 1b Quadratic Probing
ith probe: (h(key) + i

2) % TableSize

0

1

2

3

4

5

6

7 7

8 48

9 9

● (h(8) + 12) % 10 = 9
● (h(8) + 22) % 10 = 2

8

Insert 7, 9, 48, 8, 37, 57 into an empty table.

● (h(37) + 02) % 10 = 7

Problem 1b Quadratic Probing
ith probe: (h(key) + i

2) % TableSize

0

1

2 8

3

4

5

6

7 7

8 48

9 9

● (h(37) + 12) % 10 = 8
● (h(37) + 22) % 10 = 1

37Insert 7, 9, 48, 8, 37, 57 into an empty table.

● (h(57) + 02) % 10 = 7

Problem 1b Quadratic Probing
ith probe: (h(key) + i

2) % TableSize

0

1 37

2 8

3

4

5

6

7 7

8 48

9 9

● (h(57) + 12) % 10 = 8
● (h(57) + 22) % 10 = 1

57

Insert 7, 9, 48, 8, 37, 57 into an empty table.

● (h(57) + 32) % 10 = 6

Problem 1c
Separate Chaining

Use a linked list for each slot

Problem 1c Separate Chaining
Use a linked list for each slot

0

1

2

3

4

5

6

7

8

9

Insert 7, 9, 48, 8, 37, 57 into an empty table.

● h(7) % 10 = 7

Problem 1c Separate Chaining
Use a linked list for each slot

0

1

2

3

4

5

6

7

8

9

7

Insert 7, 9, 48, 8, 37, 57 into an empty table.

● h(9) % 10 = 9

Problem 1c Separate Chaining
Use a linked list for each slot

0

1

2

3

4

5

6

7 7

8

9 9

Insert 7, 9, 48, 8, 37, 57 into an empty table.

● h(48) % 10 = 8

Problem 1c Separate Chaining
Use a linked list for each slot

0

1

2

3

4

5

6

7 7

8

9 9

48

Insert 7, 9, 48, 8, 37, 57 into an empty table.

● h(8) % 10 = 8

Problem 1c Separate Chaining
Use a linked list for each slot

0

1

2

3

4

5

6

7 7

8 48

9 9

Insert 7, 9, 48, 8, 37, 57 into an empty table.

8

● h(37) % 10 = 7

Problem 1c Separate Chaining
Use a linked list for each slot

Insert 7, 9, 48, 8, 37, 57 into an empty table.

37

8

0

1

2

3

4

5

6

7 7

8 48

9 9

● h(57) % 10 = 7

Problem 1c Separate Chaining
Use a linked list for each slot

Insert 7, 9, 48, 8, 37, 57 into an empty table.

37 57

0

1

2

3

4

5

6

7 7

8 48

9 9

8

Problem 2

Describe double hashing.
● On the ith probe, we check the slot with index (h(key) + i ᐧ g(key)) % TableSize.
● The first hash function h determines the location where we initially try to place the item.
● If there is a collision, then the second hash function g determines the probing step size

(i.e. 1 ᐧ g(key), 2 ᐧ g(key), … distance away from the initial location).

Problem 2a

List two disadvantages of quadratic probing.

Describe how double hashing fixes one of these disadvantages.

Problem 2b

1. If the table is more than half full (i.e. load factor > 0.5), then we are not guaranteed to
find a location to insert an item.

2. Suffers from secondary clustering since items that initially hash to the same location
resolve the collision identically.

A good second hash function prevents secondary clustering since items that initially hash to
the same location will likely resolve the collision differently.
● Items that have the same value for the first hash function f, will likely have different

values for the second hash function g, leading to different probing step sizes.

Compare open addressing with separate chaining.

Problem 2c

Open Addressing Separate Chaining

Handles collisions by searching for an open slot within the
table itself.

Handles collisions by adding elements to a chain at the
corresponding index.

Can use less memory since all elements are stored within the
table itself.

Uses more memory since additional data structures are
needed. Worse memory locality.

Linear probing suffers from primary clustering, but is
guaranteed to find an open slot. Average runtime: O(1 + 𝜆)

Quadratic probing suffers from secondary clustering, and is
only guaranteed to find an empty slot when 𝜆 < 0.5. Best-case runtime: O(1)

Double hashing does not suffer from clustering, but requires
an additional hash function (computationally expensive). Worst-case runtime: O(n)

Thank You!

