
Section 4: Balanced Trees Solutions

0. The ABC's of AVL Trees

What are the constraints on the data types you can store in an AVL tree? When is an AVL tree preferred over another dictionary implementation, such as a HashMap?						

1. Left Rotation References

Suppose we do a left rotation on the tree below from node p. Write out what references need to change and what they need to change to.

2. Let's Plant an AVL Tree

insert 1), 4,	5, 8	3, 9,	6,	11,	3, 2,	, l,	14	into an ini	tially em	pty AVL	ree.

3. MinVL Trees

Draw an AVL tree of height 4 that contains th	ne minimum possible number of nodes.

4. AVL Trees

Insert 6	, 5,	4,	3,	2,	1,	10,	9,	8,	7 into an initially empty AVL Tree.