
CSE 332 - Section 2 Worksheet

 0. Recurrence Relations

a) Find a recurrence T(n) modeling the worst-case runtime complexity of f(n)

1 f(n) {
2 if (n <= 0) {
3 return 1
4 }
5 return 2 * f(n - 1) + 1
6 }

b) Find a recurrence T(n) modeling the worst-case runtime complexity of g(n)

 1 g(n) {
 2 if (n <= 1) {
 3 return 1000
 4 }
 5 if (g(n/3) > 5) {
 6 for (int i = 0; i < n; i++) {
 7 println(“Yay”)
 8 }
 9 return 5 * g(n/3)
10 } else {
11 for (int i = 0; i < n * n; i++) {
12 println(“Yay)
13 }
14 return 4 * g(n/3)
15 }

CSE 332 - Section 2 Worksheet

1. Tree Method
For each of the following recurrence relations, use the tree method to convert it to closed form:

a)

CSE 332 - Section 2 Worksheet

b)

c)

CSE 332 - Section 2 Worksheet

d)

At each level the number of nodes in the tree will be triple the number of nodes at the
previous level. If we consider the root to be at level 0 then the number of nodes on
level is . Additionally, the size of each subproblem will be half that of its parent, and 𝑖 3𝑖

so the size of each node on level is , which means there is non-recursive work. 𝑖 𝑛

2𝑖
𝑛

2𝑖

The total work done on level is therefore . Because there are levels the 𝑖 3
2()𝑖

𝑛 log
2
𝑛

solution is given by the sum

 𝑛
𝑖=0

log
2
𝑛 − 1

∑ 3
2()𝑖

Applying the geometric series formula we get

 𝑛
1 − 3

2()log
2
𝑛

1 − 3
2

() = 2𝑛 3
log

2
𝑛

2
log

2
𝑛 − 1() = 2𝑛 𝑛

log
2
3

𝑛 − 1() = 2𝑛
log

2
3

− 2𝑛

This means that the solution is . Θ 𝑛
log

2
3()

CSE 332 - Section 2 Worksheet

e)

At each level the number of nodes in the tree will be double the number of nodes at the
previous level. If we consider the root to be at level 0, then the number of nodes on level
 is . Additionally, the size of each subproblem will be one third that of its parent, and 𝑖 2𝑖

so the size of each node on level is , which means there is non-recursive work. 𝑖 𝑛

3𝑖
𝑛

3𝑖

The total work done on level is therefore . 𝑖 2
3()𝑖

𝑛
Because there are levels the solution is given by the sum log 𝑛

𝑖=0

log
3
𝑛 − 1

∑ 2
3()𝑖

𝑛 = 𝑛
𝑖=0

log
3
𝑛 − 1

∑ 2
3()𝑖

Observe that this is a geometric series with a ratio less than 1, and so the sum is
upper-bounded by a constant.

This means that the solution is . Θ(𝑛)

2. Putting It All Together
Consider the function . Find a recurrence modeling the worst-case runtime of this function and then find a Big-Oh 𝑓 𝑛()
bound for this recurrence.

CSE 332 - Section 2 Worksheet

1 f(n) {
2 if (n <= 1) {
3 return 0
4 }
5 int result = f(n/2)
6 for (int i = 0; i < n; i++) {
7 result *= 4
8 }
9 return result + f(n/2)
10 }

a) Find a recurrence modeling the worst-case runtime complexity of 𝑇 𝑛() 𝑓 𝑛()

We look at the three separate components (base case, non-recursive work, recursive
work). The base case is a constant amount of work, because we only do a return
statement. We’ll label it . The non-recursive work is a constant amount of work (we'll 𝑐

0
call it) for the assignments and if tests and a constant (we'll call) multiple of for 𝑐

1
𝑐

2
𝑛

the loops. The recursive work is . 2𝑇 𝑛
2()

Putting these together, we get:

 𝑇 𝑛() = 𝑐
0

, if 1

 𝑇 𝑛() = 2𝑇 𝑛
2() + 𝑐

2
𝑛 + 𝑐

1
, otherwise

b) Use your answer in part (a) to find a closed form for 𝑇 𝑛()

