
Recurrences
CSE 332 - Section 3

Recurrence Relations

Recurrence Relations

● Describes the time complexity of recursive algorithms, often uses T(n)

○ Same way that f(n) and g(n) described time complexity of non

recursive algorithms last week

● Generally in the form:

OR

“Divide & Conquer”

“Chip & Conquer”

Recurrence Relations

● n = input size
● T(n) = runtime for input size n
● b = how input shrinks for next recursive call(s) (reduction factor/ constant)
● a = number of recursive calls made per function call (branching factor)

foo(n) {
if (n <= 1) {

return 1;
}
return foo(n-1) + foo(n-1);

}

a = 2
b = 1

OR

bar(n) {
if (n <= 1) {

return 1;
}
return 2 * bar(n/2);

}

a = 1
b = 2

Problem 0a

1 f(n) {
2 if (n <= 0) {
3 return 1
4 }
5 return 2 * f(n - 1) + 1
6 }

Find a recurrence T(n) modelling the worst-case runtime complexity of f(n)

● When does the base case occur?

● What is the branching factor a?

● What is the reduction factor / b?

● What is the amount of non-recurs ive work f(n)?

n ≤0

?

a = 1 s ince we only make one recurs ive call

b = 1 s ince we always reduce input s ize by 1cons tantconstant

cons tant, which we can denote as c1

Recurrence relation forms:

●

Tree Method Overview

Tree Method Example

… … … …

…

Red box represents a
problem instance

Blue value represents
time spent at that level

of recursion

Big Idea: T(n/b)

… … … …

…c

Red box represents a
problem instance

Blue value represents
time spent at that level

of recursion
…

… …

Asymptotically, these never matter!

Big Idea: T(n - b)
Red box

represents a
problem instance

Blue value
represents time

spent at that level
of recursion

n f(n)

n - b n - b

n - 2b n - 2b n - 2b n - 2b

…
… … … …

x x x … xx

f(n-b)f(n-b)

f(n-2b) f(n-2b) f(n-2b)f(n-2b)

c c c c c

≈ n/b levels

Asymptotically, these never matter!

⇒ ai f(n - bi)
work per level

What Parts
Matter?

Asymptotically Speaking

Base Case Doesn’t Matter!

… … … …

…

Red box represents a
problem instance

Blue value represents
time spent at that level

of recursion

… …

Constants for f(n) Don’t Matter!

… … … …

…

Red box represents a
problem instance

Blue value represents
time spent at that level

of recursion

… …

Branching Factor (a) Matters!
… … … …

…

Red box represents a
problem instance

Blue value represents
time spent at that level

of recursion

Solving the Summation

can move the n using the constant multiple rule

Geometric Series Sum Rule

simplification + props. of log & exponents:

multiplied by -2 and distributed our n

log rules:

Reduction Factor (/b) Does Matter!

… … … …

…

Red box represents a
problem instance

Blue value represents
time spent at that level

of recursion

… …

Solving the Summation

This is a geometric series with a ratio < 1, so it converges to a constant!

can move the n using the constant multiple rule

Reduction Constant (-b) Mat t ers!
Left/top represents -1 case
Right/bottom represents -2

case n 1

n-1 or n-2 n-1 or n-2

n-2 or n-4 n-2 or n-4 n-2 or n-4 n-2 or n-4

… … … …

1 1 1 … 11

11

1 1 11

1 1 1 1 1

≈ n levels for -1
≈ n/2 levels for -2

⇒ 2i

work per level for
both cases

Hint: Use the Finite Geometric Series (#7 on Math Identities) to solve these summations!

General
Advice

Recursive Running Times - Guidance
•

OR

•

● Draw a tree such that:
○ Each node has a children
○ The “size of each node is -b times the size of its

parent
○ The “work” for each node is f applied to its size
○ The height of the tree is n/b

● Sum the tree horizontally
○ I.e. identify the total work done at each level

● Sum the levels’ work vertically
○ Given the sum of all work in the entire tree

Only differences between /b
cases highlighted in yellow

Putting it All Together

Problem 2(a)

(a) Find a recurrence T(n) modeling the worst-case runtime complexity of f(n).

?

Problem 2(a)

(a) Find a recurrence T(n) modeling the worst-case runtime complexity of f(n).

● 2 function calls -> a = 2
● Reducing input size by half -> (n / 2)
● Non-recursive work has loop with n ite rations

and some constant work -> f(n) = c_2n + c_1

Problem 2(b)

(b) Find a closed form to your answer for (a).

Our first call to T(n)

Our first call to T(n)
Input: n

Our first
call to T(n)

Input: n
Work:
c2*n + c1

Input:
n/2

Input:
n/2

“2T(...)” = 2
recursive calls

Input: n
Work:
c2*n + c1

Input:
n/2

Input:
n/2

Input: n
Work:
c2*n + c1

Input: n/2
Work:
c2*(n/2)+c1

Input: n/2
Work:
c2*(n/2)+c1

Input: n
Work:
c2*n + c1

Input: n/2
Work:
c2*(n/2)+c1

Input: n/2
Work:
c2*(n/2)+c1

Input:
n/4

Input:
n/4

Input:
n/4

Input:
n/4

Input: n
Work:
c2*n + c1

Input: n/2
Work:
c2*(n/2)+c1

Input: n/2
Work:
c2*(n/2)+c1

Input: n/4
Work:
c2*(n/4)+c1

Input: n/4
Work:
c2*(n/4)+c1

Input: n/4
Work:
c2*(n/4)+c1

Input: n/4
Work:
c2*(n/4)+c1

Input: n
Work:
c2*n + c1

Input: n/2
Work:
c2*(n/2)+c1

Input: n/2
Work:
c2*(n/2)+c1

Input: n/4
Work:
c2*(n/4)+c1

Input: n/4
Work:
c2*(n/4)+c1

Input: n/4
Work:
c2*(n/4)+c1

Input: n/4
Work:
c2*(n/4)+c1

Input: n
Work:
c2*n + c1

Input: 1 Input: 1 Input: 1 Input: 1

Input: n/2
Work:
c2*(n/2)+c1

Input: n/2
Work:
c2*(n/2)+c1

Input: n/4
Work:
c2*(n/4)+c1

Input: n/4
Work:
c2*(n/4)+c1

Input: n/4
Work:
c2*(n/4)+c1

Input: n/4
Work:
c2*(n/4)+c1

Input: n
Work:
c2*n + c1

Input: 1
Work: c0

Input: 1
Work: c0

Input: 1
Work: c0

Input: 1
Work: c0

Input: n/2
Work:
c2*(n/2)+c1

Input: n/2
Work:
c2*(n/2)+c1

Input: n/4
Work:
c2*(n/4)+c1

Input: n/4
Work:
c2*(n/4)+c1

Input: n/4
Work:
c2*(n/4)+c1

Input: n/4
Work:
c2*(n/4)+c1

Input: n
Work:
c2*n + c1

Input: 1
Work: c0

Input: 1
Work: c0

Input: 1
Work: c0

Input: 1
Work: c0

Since we’re in /b case:

With a, b, and f(n) plugged in:

Finite Geometric Series:

Thank You!

	Recurrences
	Recurrence Relations
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Tree Method Overview
	Tree Method Example
	Big Idea: T(n/b)
	Big Idea: T(n - b)
	What Parts Matter?
	Base Case Doesn’t Matter!
	Constants for f(n) Don’t Matter!
	Branching Factor (a) Matters!
	Solving the Summation
	 Reduction Factor (/b) Does Matter!
	Solving the Summation
	 Reduction Constant (-b) Matters!
	General Advice
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Putting it All Together
	Problem 2(a)
	Problem 2(a)
	Problem 2(b)
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Thank You!

