
CSE 332: Data Structures & Parallelism

Lecture 27: B Trees & Wrap Up

Ruth Anderson
Winter 2025

Today

• The Memory Hierarchy and you (briefly)
• B-Trees: a dictionary that considers the memory hierarchy
• Wrap Up

3/14/2025 2

Now what?

• We have a data structure for the dictionary ADT (AVL tree) that
has worst-case O(log n) behavior
– One of several interesting/fantastic balanced-tree

approaches

• We are about to learn another balanced-tree approach: B Trees

• First, to motivate why B trees are better for really large
dictionaries (say, over 1GB = 230 bytes), need to understand
some memory-hierarchy basics
– Don’t always assume “every memory access has an

unimportant O(1) cost”
– Learn more in CSE351/333/471, focus here on relevance to

data structures and efficiency

3/14/2025 3

3/14/2025

Why do we need to know about the
memory hierarchy?

• One of the assumptions that Big-Oh makes is that all operations
take the same amount of time.

• Is that really true?

4

A typical hierarchy
“Every desktop/laptop/server is

different” but here is a plausible
configuration these days

3/14/2025 5

CPU

Disk: 1TB = 240

Main memory: 2GB = 231

L2 Cache: 2MB = 221

L1 Cache: 128KB = 217

instructions (e.g., addition): 230/sec

get data in L1: 229/sec = 2 instructions

get data in L2: 225/sec = 30
instructions

get data in main memory:
222/sec = 250 instructions

get data from “new
place” on disk:
27/sec =8,000,000

instructions

Morals
It is much faster to do: Than:
5 million arithmetic ops 1 disk access
2500 L2 cache accesses 1 disk access
400 main memory accesses 1 disk access

Why are computers built this way?
– Physical realities (speed of light, closeness to CPU)
– Cost (price per byte of different technologies)
– Disks get much bigger not much faster

• Spinning at 7200 RPM accounts for much of the
slowness and unlikely to spin faster in the future

– Speedup at higher levels (e.g. a faster processor) makes
lower levels relatively slower

– Later in the course: more than 1 CPU!

3/14/2025 6

“Fuggedaboutit”, usually

The hardware automatically moves data into the caches from main
memory for you
– Replacing items already there
– So algorithms much faster if “data fits in cache” (often does)

Disk accesses are done by software (e.g., ask operating system to
open a file or database to access some data)

So most code “just runs” but sometimes it’s worth designing
algorithms / data structures with knowledge of memory hierarchy
– And when you do, you often need to know one more thing…

3/14/2025 7

How does data move up the hierarchy?

• Moving data up the memory hierarchy is slow because of latency
(think distance-to-travel)
– Since we’re making the trip anyway, may as well carpool

• Get a block of data in the same time it would take to get a byte
– Sends nearby memory because:

• It’s easy
• And likely to be asked for soon (think fields/arrays)

• Side note: Once a value is in cache, may as well keep it around for
awhile; accessed once, a particular value is more likely to be
accessed again in the near future (more likely than some random
other value)

3/14/2025 8
Temporal locality

Spatial Locality

Locality

Temporal Locality (locality in time) – If an address is
referenced, it will tend to be referenced again soon.

Spatial Locality (locality in space) – If an address is
referenced, addresses that are close by will tend to
be referenced soon.

3/14/2025 9

Arrays vs. Linked lists

• Which has the potential to best take advantage of spatial
locality?

3/14/2025 10

Block/line size

• The amount of data moved from disk into memory is called the
“block” size or the “page” size
– Not under program control, determined in hardware and OS

• The amount of data moved from memory into cache is called the
cache “line” size
– Not under program control, determined in hardware

3/14/2025 11

Connection to data structures

• An array benefits more than a linked list from block moves
– Language (e.g., Java) implementation can put the list nodes

anywhere, whereas array is typically contiguous memory
• Suppose you have a queue to process with 223 items of 27 bytes

each on disk and the block size is 210 bytes
– An array implementation needs 220 disk accesses

• If “perfectly streamed”, > 4 seconds
• If “random places on disk”, 8000 seconds (> 2 hours)

– A linked list implementation in the worst case needs 223

“random” disk accesses (> 16 hours) – probably not that bad

• Note: “array” doesn’t necessarily mean “good”
– Binary heaps “make big jumps” to percolate (different block)

3/14/2025 12

BSTs?
• Looking things up in balanced binary search trees is O(log n), so

even for n = 239 (512GB) we need not worry about minutes or
hours

• Still, number of disk accesses matters:
– Pretend for a minute we had an AVL tree of height 55
– The total number of nodes could be?_________
– Most of the nodes will be on disk: the tree is shallow, but it is

still many gigabytes big so the entire tree cannot fit in memory
• Even if memory holds the first 25 nodes on our path, we

still potentially need 30 disk accesses if we are traversing
the entire height of the tree.

3/14/2025 13

Note about numbers; moral

• Note: All the numbers in this lecture are “ballpark” “back of the
envelope” figures

• Moral: Even if they are off by, say, a factor of 5, the moral is the
same:

If your data structure is mostly on disk,
you want to minimize disk accesses

• A better data structure in this setting would exploit the block size
and relatively fast memory access to avoid disk accesses…

3/14/2025 14

Trees as Dictionaries

(N= 10 million) [Example from Weiss]

In worst case, each node access is a disk access,
number of accesses:

Disk accesses
• BST

• AVL

• B Tree

3/14/2025 15

Our goal

• Problem: A dictionary with so much data most of it is on disk

• Desire: A balanced tree (logarithmic height) that is even
shallower than AVL trees so that we can minimize disk
accesses and exploit disk-block size

• A key idea: Increase the branching factor of our tree

3/14/2025 16

M-ary Search Tree

Perfect tree of height h has (Mh+1-1)/(M-1) nodes (textbook, page 4)

What is the height of this tree?
What is the worst case running time of find?

• Build some sort of search tree with branching factor M:
– Have an array of sorted children (Node[])
– Choose M to fit snugly into a disk block (1 access for array)

3/14/2025 17

M-ary Search Tree

• # hops for find?
– If we have a balanced M-ary tree:
– Approx. logM n hops instead of log2 n (for balanced BST)
– Example: M = 256 (=28) and n = 240 that’s 5 hops instead of 40 hops

• Sounds good, but how do we decide which branch to take?
– Binary tree: Less than/greater than node value?
– M-ary: In range 1? In range 2? In range 3?... In range M?

• Runtime of find if balanced: O(log2 M logM n)
– logM n is the height we traverse.
– log2M: At each step, find the correct child branch to take using binary

search among the M options!
3/14/2025 18

Questions about M-ary search trees
• What should the order property be?
• How would you rebalance (ideally without more disk accesses)?
• Storing real data at inner-nodes (like we do in a BST) seems kind of

wasteful…
– To access the node, will have to load the data from disk,

even though most of the time we won’t use it!!
– Usually we are just “passing through” a node on the way to the

value we are actually looking for.

So let’s use the branching-factor idea, but for a different kind of
balanced tree:
– Not a binary search tree
– But still logarithmic height for any M > 2

3/14/2025 19

B+ Trees (we and the book say “B Trees”)
• Two types of nodes: internal nodes

& leaves
• Each internal node has room for up

to M-1 keys and M children
– No other data; all data at the

leaves!
• Order property:

Subtree between keys a and b
contains only data that is ≥ a
and < b (notice the ≥)

• Leaf nodes have up to L sorted data
items

• As usual, we’ll ignore the “along for
the ride” data in our examples
– Remember no data at non-leaves

3/14/2025 20

3 7 12 21

21≤x12≤x<217≤x<123≤x<7x<3

Remember:
•Leaves store data
•Internal nodes are

‘signposts’

Find

• Different from BST in that we don’t store data at internal nodes

• But find is still an easy root-to-leaf recursive algorithm
– At each internal node do binary search on (up to) M-1 keys to

find the branch to take
– At the leaf do binary search on the (up to) L data items

• But to get logarithmic running time, we need a balance condition…

3/14/2025 21

3 7 12 21

21≤x12≤x<217≤x<123≤x<7x<3

Structure Properties
• Root (special case)

– If tree has ≤ L items, root is a leaf (occurs when starting up,
otherwise unusual)

– Else has between 2 and M children

• Internal nodes
– Have between M/2 and M children, i.e., at least half full

• Leaf nodes
– All leaves at the same depth
– Have between L/2 and L data items, i.e., at least half full

Any M > 2 and L will work, but:
We pick M and L based on disk-block size

3/14/2025 22

Example
Suppose M=4 (max # pointers in internal node)

and L=5 (max # data items at leaf)
– All internal nodes have at least 2 children
– All leaves have at least 3 data items (only showing keys)
– All leaves at same depth

3/14/2025 23

6
8
9
10

12
14
16
17

20
22

27
28
32

34
38
39
41

44
47
49

50
60
70

12 44

6 20 27 34 50

19

24

1
2
4

Note on notation: Inner nodes drawn horizontally,
leaves vertically to distinguish. Include empty cells

Balanced enough

Not hard to show height h is logarithmic in number of data items n

• Let M > 2 (if M = 2, then a list tree is legal – no good!)

• Because all nodes are at least half full (except root may have
only 2 children) and all leaves are at the same level, the
minimum number of data items n for a height h>0 tree is…

n ≥ 2 M/2 h-1 L/2

3/14/2025 24

minimum number
of leaves

minimum data
per leaf

Example: B-Tree vs. AVL Tree

Suppose we have 100,000,000 items

• Maximum height of AVL tree?

• Maximum height of B tree with M=128 and L=64?

3/14/2025 25

Example: B-Tree vs. AVL Tree

Suppose we have 100,000,000 items

• Maximum height of AVL tree?
– Recall S(h) = 1 + S(h-1) + S(h-2)
– lecture8.xlsx reports: 37

• Maximum height of B tree with M=128 and L=64?
– Recall (2 M/2 h-1) L/2
– lecture9.xlsx reports: 5 (and 4 is more likely)
– Also not difficult to compute via algebra

3/14/2025 26

Disk Friendliness

What makes B trees so disk friendly?

• Many keys stored in one internal node
– All brought into memory in one disk access

• IF we pick M wisely
– Makes the binary search over M-1 keys totally worth it

(insignificant compared to disk access times)

• Internal nodes contain only keys
– Any find wants only one data item; wasteful to load

unnecessary items with internal nodes
– So only bring one leaf of data items into memory
– Data-item size doesn’t affect what M is

3/14/2025 27

Maintaining balance

• So this seems like a great data structure (and it is)

• But we haven’t implemented the other dictionary operations yet
– insert
– delete

• As with AVL trees, the hard part is maintaining structure properties
– Example: for insert, there might not be room at the correct

leaf

3/14/2025 28

Building a B-Tree (insertions)

3/14/2025 29

The empty B-
Tree (the root
will be a leaf at
the beginning)

M = 3 L = 3

Insert(3) Insert(18) Insert(14)
3 3

18

3

14

18

Just need to keep data
in order

Insert(30)
3

14

18

3

14

18

M = 3 L = 3

30

3

14

18

30

3/14/2025 30

18

•When we ‘overflow’ a leaf, we split it into 2 leaves
•Parent gains another child
•If there is no parent (like here), we create one; how do we pick the key
shown in it?

•Smallest element in right tree

???

Insert(32)
3

14

18

30

18

3

14

18

30

18

3

14

18

30

18

Insert(36)

3

14

18

30

18
Insert(15)

M = 3 L = 3

32

32

36

32

32

36

32

15
3/14/2025 31

Split leaf again

Insert(16)
3

14

15

18

30

18 32

32

36

3

14

15

18

30

18 32

32

36

18

30

18 32

32

36

M = 3 L = 3

16

3

14

15

16

15

15 32

18

3/14/2025 32

Split the internal node
(in this case, the root)

What
now?

Insert(12,40,45,38)

3

14

15

16

15

18

30

32

32

36

18

3

12

14

15

16

15

18

30

32 40

32

36

38

18

40

45

M = 3 L = 3

3/14/2025 33

Note: Given the leaves and the structure of the tree, we
can always fill in internal node keys;
‘the smallest value in my right branch’

Insertion Algorithm

1. Insert the data in its leaf in sorted order

2. If the leaf now has L+1 items, overflow!
– Split the leaf into two nodes:

• Original leaf with (L+1)/2 smaller items
• New leaf with (L+1)/2 = L/2 larger items

– Attach the new child to the parent
• Adding new key to parent in sorted order

3. If step (2) caused the parent to have M+1 children, overflow!
– …

3/14/2025 34

Insertion algorithm continued

3. If an internal node has M+1 children
– Split the node into two nodes

• Original node with (M+1)/2 smaller items
• New node with (M+1)/2 = M/2 larger items

– Attach the new child to the parent
• Adding new key to parent in sorted order

Splitting at a node (step 3) could make the parent overflow too
– So repeat step 3 up the tree until a node doesn’t overflow
– If the root overflows, make a new root with two children

• This is the only case that increases the tree height

3/14/2025 35

Efficiency of insert

• Find correct leaf: O(log2 M logM n)
• Insert in leaf: O(L)
• Split leaf: O(L)
• Split parents all the way up to root: O(M logM n)

Total: O(L + M logM n)

But it’s not that bad:
– Splits are not that common (only required when a node is FULL,

M and L are likely to be large, and after a split, will be half empty)
– Splitting the root is extremely rare
– Remember disk accesses were the name of the game:

O(logM n)
3/14/2025 36

B-Tree Reminder: Another dictionary

• Before we talk about deletion, just keep in mind overall idea:
– Large data sets won’t fit entirely in memory
– Disk access is slow
– Set up tree so we do one disk access per node in tree
– Then our goal is to keep tree shallow as possible
– Balanced binary tree is a good start, but we can do better

than log2n height
– In an M-ary tree, height drops to logMn

• Why not set M really really high? Height 1 tree…
• Instead, set M so that each node fits in a disk block

3/14/2025 37

Delete(32)

3

12

14

15

16

15

18

30

32 40

32

36

38

18

40

45

3

12

14

15

16

15

18

30

40

18

40

45

And Now for Deletion…

M = 3 L = 3

36

38

3/14/2025 38

Easy case: Leaf still has enough data; just remove

Delete(15)

3

12

14

15

16

15

18

30

36 40

36

38

18

40

45

3

12

14

16 18

30

36 40

36

38

18

40

45

M = 3 L = 3
3/14/2025 39

Is there a problem?

3

12

14

16

18

30

36 40

36

38

18

40

45

M = 3 L = 3

3

12

14

16

16

18

30

36 40

36

38

18

40

45

3/14/2025 40

Adopt from neighbor!

Delete(16)

3

12

14

16

14

18

30

36 40

36

38

18

40

45

14

18

30

36 40

36

38

18

40

45

M = 3 L = 3

3

12

14

3/14/2025 41

Is there a problem?

3

12

14

18

30

36 40

36

38

18

40

45

M = 3 L = 3

14

18

30

36 40

36

38

18

40

45

3

12

14

3/14/2025 42

Merge with neighbor!

But hey, Is there a problem?

3

12

14

18

30

36 40

36

38

18

40

45

M = 3 L = 3

3

12

14

18

18

30

40

36

38

36

40

45

3/14/2025 43

Adopt from neighbor!

3

12

14

18

18

30

40

36

38

36

40

45

3

12

18

18

30

40

36

38

36

40

45

M = 3 L = 3

3/14/2025 44

Delete(14)

Delete(18)

3

12

18

18

30

40

36

38

36

40

45

M = 3 L = 3

3

12

30

40

36

38

36

40

45

3/14/2025 45

Is there a problem?

3

12

30

40

36

38

36

40

45

M = 3 L = 3

3

12

30

40

36

38

36

40

45

3/14/2025 46

Merge with neighbor!

But hey, Is there a problem?

3

12

30

40

36

38

36

40

45

36 40

3

12

30

3

36

38

40

45

M = 3 L = 3

3/14/2025 47

Merge with neighbor!

But hey, Is there a problem?

36 40

3

12

30

36

38

40

45

M = 3 L = 3

36 40

3

12

30

3

36

38

40

45

3/14/2025 48

Pull out the root!

Deletion Algorithm, part 1

1. Remove the data from its leaf

2. If the leaf now has L/2 - 1, underflow!
– If a neighbor has > L/2 items, adopt and update parent
– Else merge node with neighbor

• Guaranteed to have a legal number of items
• Parent now has one less node

3. If step (2) caused the parent to have M/2 - 1 children,
underflow!
– …

3/14/2025 49

Deletion algorithm (continued)

3. If an internal node has M/2 - 1 children
– If a neighbor has > M/2 items, adopt and update parent
– Else merge node with neighbor

• Guaranteed to have a legal number of items
• Parent now has one less node, may need to continue

up the tree

If we merge all the way up through the root, that’s fine unless the
root went from 2 children to 1
– In that case, delete the root and make child the root
– This is the only case that decreases tree height

3/14/2025 50

Worst-Case Efficiency of Delete

• Find correct leaf: O(log2 M logM n)
• Remove from leaf: O(L)
• Adopt from or merge with neighbor: O(L)
• Adopt or merge all the way up to root: O(M logM n)

Total: O(L + M logM n)

But it’s not that bad:
– Merges are not that common
– Disk accesses are the name of the game: O(logM n)

3/14/2025 51

Insert vs delete comparison

Insert
• Find correct leaf:
• Insert in leaf:
• Split leaf:
• Split parents all the way up to root:

Delete
• Find correct leaf:
• Remove from leaf:
• Adopt/merge from/with neighbor leaf:
• Adopt or merge all the way up to root:

O(log2 M logM n)
O(L)
O(L)
O(M logM n)

O(log2 M logM n)
O(L)
O(L)
O(M logM n)

3/14/2025 52

B Trees in Java?

For most of our data structures, we have encouraged writing high-
level, reusable code, such as in Java with generics

It is worthwhile to know enough about “how Java works” to
understand why this is probably a bad idea for B trees
– If you just want a balanced tree with worst-case logarithmic

operations, no problem
• If M=3, this is called a 2-3 tree
• If M=4, this is called a 2-3-4 tree

– Assuming our goal is efficient number of disk accesses
• Java has many advantages, but it wasn’t designed for this

The key issue is extra levels of indirection…

3/14/2025 53

Naïve approach in Java
Even if we assume data items have int keys, you cannot get the

data representation you want for “really big data”

interface Keyed {
int getKey();

}
class BTreeNode<E implements Keyed> {
static final int M = 128;
int[] keys = new int[M-1];
BTreeNode<E>[] children = new BTreeNode[M];
int numChildren = 0;
…

}
class BTreeLeaf<E implements Keyed> {
static final int L = 32;
E[] data = (E[])new Object[L];
int numItems = 0;
…

}
3/14/2025 54

What that looks like in Java

3/14/2025 55

BTreeNode (Interior node)
122045

70

BTreeLeaf (Leaf node)

20

(array of M-1 ints)

(array of M refs to
BTreeNodes)

(array of L refs to
data objects)

All the red references indicate
“unnecessary” indirection that
might be avoided in another
programming language.

numChildren

children

keys

numItems

data
Note: data objects
not in contiguous
memory.

…

…

…

The moral

• The whole idea behind B trees was to keep related data in
contiguous memory

• But that’s “the best you can do” in Java
– Again, the advantage is generic, reusable code
– But for your performance-critical web-index, not the way to

implement your B-Tree for terabytes of data

• Other languages (e.g., C++) have better support for “flattening
objects into arrays”

• Levels of indirection matter!

3/14/2025 56

Wrap Up!

What Have We Done This Quarter?

• Data Structures
– Classic structures (hash tables, balanced BSTs, binary

heaps, etc.)
• You now understand these deeply, since you implemented

many of them!
• And you know how to analyze them with 𝑂𝑂,Ω,Θ.

– And the ADTs
– Analyze tradeoffs – there’s not just one “right” answer!

• Algorithms
– Sorting algorithms (examples of Divide & Conquer)
– Graph algorithms (examples of Greedy Algorithms)
– Effectively using our data structures to solve problems more

efficiently (e.g. we used data structures in graph algorithms)

3/14/2025 58

What Else Have We Done This Quarter?

• Parallelism & Concurrency
– Exploit multiple processors
– Fork-Join patterns (maps, reduces, prefixes, packs)
– Concurrency: share resources safely

• Mixing theory and practice
– Big-𝑂𝑂 analysis is the starting point, and you have more tools

now (recurrences, worst- vs. best-case, amortization,…)
– But in-practice constant factors, cache behavior, and a

bunch of other things also matter (and are not captured by
big-𝑂𝑂)

3/14/2025 59

What’s Next?

• If you enjoyed shortest paths and MSTs
– Take CSE 421: Algorithms

• If you loved P vs. NP or the sorting lower bound (what
can’t we do?)
– Take CSE 431:Theory of Computation

• If you liked parallelism & concurrency
– CSE 451: Operating Systems for how scheduling & locks

actually work
– CSE 452: Distributed Systems for hard concurrency problems.

• If your favorite part was writing and debugging code
– CSE 331 has lots of code, CSE 333 does too.

3/14/2025 60

Thank You!

• Thank you for a great quarter!
• Thanks to the CSE 332 Staff for a great quarter!
• We hope to see you in the future!

3/14/2025 61

	CSE 332: Data Structures & Parallelism��Lecture 27: B Trees & Wrap Up
	Today
	Now what?
	Why do we need to know about the memory hierarchy?
	A typical hierarchy
	Morals
	“Fuggedaboutit”, usually
	How does data move up the hierarchy?
	Locality
	Arrays vs. Linked lists
	Block/line size
	Connection to data structures
	BSTs?
	Note about numbers; moral
	Trees as Dictionaries
	Our goal
	M-ary Search Tree
	M-ary Search Tree
	Questions about M-ary search trees
	B+ Trees (we and the book say “B Trees”)
	Find
	Structure Properties
	Example
	Balanced enough
	Example: B-Tree vs. AVL Tree
	Example: B-Tree vs. AVL Tree
	Disk Friendliness
	Maintaining balance
	Building a B-Tree (insertions)
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Insertion Algorithm
	Insertion algorithm continued
	Efficiency of insert
	B-Tree Reminder: Another dictionary
	And Now for Deletion…
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Deletion Algorithm, part 1
	Deletion algorithm (continued)
	Worst-Case Efficiency of Delete
	Insert vs delete comparison
	 B Trees in Java?
	Naïve approach in Java
	What that looks like in Java
	The moral
	Wrap Up!
	What Have We Done This Quarter?
	What Else Have We Done This Quarter?
	What’s Next?
	Thank You!

