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Today

• The Memory Hierarchy and you (briefly)
• B-Trees:  a dictionary that considers the memory hierarchy
• Wrap Up
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Now what?

• We have a data structure for the dictionary ADT (AVL tree) that 
has worst-case O(log n) behavior
– One of several interesting/fantastic balanced-tree 

approaches

• We are about to learn another balanced-tree approach: B Trees

• First, to motivate why B trees are better for really large 
dictionaries (say, over 1GB = 230 bytes), need to understand 
some memory-hierarchy basics
– Don’t always assume “every memory access has an 

unimportant O(1) cost”
– Learn more in CSE351/333/471, focus here on relevance to 

data structures and efficiency
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3/14/2025

Why do we need to know about the 
memory hierarchy?

• One of the assumptions that Big-Oh makes is that all operations 
take the same amount of time.

• Is that really true?
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A typical hierarchy
“Every desktop/laptop/server is 

different” but here is a plausible 
configuration these days
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CPU

Disk: 1TB = 240

Main memory: 2GB = 231

L2 Cache: 2MB = 221

L1 Cache: 128KB = 217

instructions (e.g., addition): 230/sec

get data in L1: 229/sec = 2 instructions

get data in L2: 225/sec = 30 
instructions 

get data in main memory:
222/sec = 250 instructions 

get data from “new 
place” on disk:
27/sec =8,000,000

instructions



Morals
It is much faster to do: Than:
5 million arithmetic ops 1 disk access
2500 L2 cache accesses 1 disk access
400 main memory accesses 1 disk access

Why are computers built this way?
– Physical realities (speed of light, closeness to CPU)
– Cost (price per byte of different technologies)
– Disks get much bigger not much faster

• Spinning at 7200 RPM accounts for much of the 
slowness and unlikely to spin faster in the future

– Speedup at higher levels (e.g. a faster processor) makes 
lower levels relatively slower

– Later in the course: more than 1 CPU!
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“Fuggedaboutit”, usually

The hardware automatically moves data into the caches from main 
memory for you
– Replacing items already there
– So algorithms much faster if “data fits in cache” (often does)

Disk accesses are done by software (e.g., ask operating system to 
open a file or database to access some data)

So most code “just runs” but sometimes it’s worth designing 
algorithms / data structures with knowledge of memory hierarchy
– And when you do, you often need to know one more thing…
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How does data move up the hierarchy?

• Moving data up the memory hierarchy is slow because of latency
(think distance-to-travel)
– Since we’re making the trip anyway, may as well carpool

• Get a block of data in the same time it would take to get a byte
– Sends nearby memory because:

• It’s easy
• And likely to be asked for soon (think fields/arrays)

• Side note: Once a value is in cache, may as well keep it around for 
awhile; accessed once, a particular value is more likely to be 
accessed again in the near future (more likely than some random 
other value) 
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Locality

Temporal Locality (locality in time) – If an address is 
referenced, it will tend to be referenced again soon.

Spatial Locality (locality in space) – If an address is 
referenced, addresses that are close by will tend to 
be referenced soon.
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Arrays vs. Linked lists

• Which has the potential to best take advantage of spatial 
locality?
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Block/line size

• The amount of data moved from disk into memory is called the 
“block” size or the “page” size
– Not under program control, determined in hardware and OS

• The amount of data moved from memory into cache is called the 
cache “line” size
– Not under program control, determined in hardware
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Connection to data structures

• An array benefits more than a linked list from block moves
– Language (e.g., Java) implementation can put the list nodes 

anywhere, whereas array is typically contiguous memory
• Suppose you have a queue to process with 223 items of 27 bytes 

each on disk and the block size is 210 bytes
– An array implementation needs 220 disk accesses

• If “perfectly streamed”, > 4 seconds
• If “random places on disk”, 8000 seconds (> 2 hours)

– A linked list implementation in the worst case needs 223 

“random” disk accesses (>  16 hours) – probably not that bad

• Note: “array” doesn’t necessarily mean “good”
– Binary heaps “make big jumps” to percolate (different block)
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BSTs?
• Looking things up in balanced binary search trees is O(log n), so 

even for n = 239 (512GB) we need not worry about minutes or 
hours

• Still, number of disk accesses matters:
– Pretend for a minute we had an AVL tree of height 55
– The total number of nodes could be?_________
– Most of the nodes will be on disk: the tree is shallow, but it is 

still many gigabytes big so the entire tree cannot fit in memory
• Even if memory holds the first 25 nodes on our path, we 

still potentially need 30 disk accesses if we are traversing 
the entire height of the tree.

3/14/2025 13



Note about numbers; moral

• Note: All the numbers in this lecture are “ballpark” “back of the 
envelope” figures

• Moral: Even if they are off by, say, a factor of 5, the moral is the 
same: 

If your data structure is mostly on disk, 
you want to minimize disk accesses

• A better data structure in this setting would exploit the block size 
and relatively fast memory access to avoid disk accesses…
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Trees as Dictionaries

(N= 10 million) [Example from Weiss]

In worst case, each node access is a disk access, 
number of accesses:

# Disk accesses
• BST

• AVL

• B Tree
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Our goal

• Problem: A dictionary with so much data most of it is on disk

• Desire: A balanced tree (logarithmic height) that is even 
shallower than AVL trees so that we can minimize disk 
accesses and exploit disk-block size

• A key idea: Increase the branching factor of our tree
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M-ary Search Tree

Perfect tree of height h has (Mh+1-1)/(M-1) nodes (textbook, page 4)

What is the height of this tree?
What is the worst case running time of find?

• Build some sort of search tree with branching factor M:
– Have an array of sorted children (Node[])
– Choose M to fit snugly into a disk block (1 access for array)
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M-ary Search Tree

• # hops for find?
– If we have a balanced M-ary tree:
– Approx. logM n hops instead of log2 n (for balanced BST)
– Example: M = 256 (=28) and n = 240 that’s 5 hops instead of 40 hops

• Sounds good, but how do we decide which branch to take?
– Binary tree: Less than/greater than node value?
– M-ary: In range 1? In range 2? In range 3?... In range M?

• Runtime of find if balanced: O(log2 M logM n)
– logM n is the height we traverse. 
– log2M: At each step, find the correct child branch to take using binary 

search among the M options!
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Questions about M-ary search trees
• What should the order property be?
• How would you rebalance (ideally without more disk accesses)?
• Storing real data at inner-nodes (like we do in a BST) seems kind of 

wasteful…
– To access the node, will have to load the data from disk, 

even though most of the time we won’t use it!!
– Usually we are just “passing through” a node on the way to the 

value we are actually looking for.

So let’s use the branching-factor idea, but for a different kind of 
balanced tree:
– Not a binary search tree
– But still logarithmic height for any M > 2
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B+ Trees (we and the book say “B Trees”)
• Two types of nodes: internal nodes 

& leaves
• Each internal node has room for up 

to M-1 keys and M children
– No other data; all data at the 

leaves!
• Order property:

Subtree between keys a and b
contains only data that is ≥ a
and < b (notice the ≥)

• Leaf nodes have up to L sorted data 
items

• As usual, we’ll ignore the “along for 
the ride” data in our examples
– Remember no data at non-leaves
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3 7 12 21

21≤x12≤x<217≤x<123≤x<7x<3

Remember:
•Leaves store data
•Internal nodes are 

‘signposts’



Find

• Different from BST in that we don’t store data at internal nodes

• But find is still an easy root-to-leaf recursive algorithm
– At each internal node do binary search on (up to) M-1 keys to 

find the branch to take
– At the leaf do binary search on the (up to) L data items

• But to get logarithmic running time, we need a balance condition…
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Structure Properties
• Root (special case)

– If tree has ≤ L items, root is a leaf (occurs when starting up, 
otherwise unusual)

– Else has between 2 and M children

• Internal nodes
– Have between M/2 and M children, i.e., at least half full

• Leaf nodes
– All leaves at the same depth
– Have between L/2 and L data items, i.e., at least half full

Any M > 2 and L will work, but:
We pick M and L based on disk-block size
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Example
Suppose M=4 (max # pointers in internal node)

and L=5 (max # data items at leaf)
– All internal nodes have at least 2 children
– All leaves have at least 3 data items (only showing keys)
– All leaves at same depth
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14
16
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27
28
32

34
38
39
41

44
47
49 

50
60
70

12 44

6 20 27 34 50

19 

24

1
2
4

Note on notation: Inner nodes drawn horizontally, 
leaves vertically to distinguish.  Include empty cells



Balanced enough

Not hard to show height h is logarithmic in number of data items n

• Let M > 2 (if M = 2, then a list tree is legal – no good!)

• Because all nodes are at least half full (except root may have 
only 2 children) and all leaves are at the same level, the 
minimum number of data items n for a height h>0 tree is…

n ≥ 2 M/2 h-1 L/2
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minimum number
of leaves

minimum data 
per leaf



Example: B-Tree vs. AVL Tree

Suppose we have 100,000,000 items

• Maximum height of AVL tree?

• Maximum height of B tree with M=128 and L=64?
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Example: B-Tree vs. AVL Tree

Suppose we have 100,000,000 items

• Maximum height of AVL tree?
– Recall S(h) = 1 + S(h-1) + S(h-2)
– lecture8.xlsx reports: 37

• Maximum height of B tree with M=128 and L=64?
– Recall (2 M/2 h-1) L/2
– lecture9.xlsx reports: 5 (and 4 is more likely)
– Also not difficult to compute via algebra
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Disk Friendliness

What makes B trees so disk friendly?

• Many keys stored in one internal node
– All brought into memory in one disk access

• IF we pick M wisely
– Makes the binary search over M-1 keys totally worth it 

(insignificant compared to disk access times)

• Internal nodes contain only keys
– Any find wants only one data item; wasteful to load 

unnecessary items with internal nodes
– So only bring one leaf of data items into memory
– Data-item size doesn’t affect what M is
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Maintaining balance

• So this seems like a great data structure (and it is)

• But we haven’t implemented the other dictionary operations yet
– insert
– delete

• As with AVL trees, the hard part is maintaining structure properties
– Example: for insert, there might not be room at the correct 

leaf
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Building a B-Tree (insertions)
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The empty B-
Tree (the root
will be a leaf at 
the beginning)

M = 3 L = 3

Insert(3) Insert(18) Insert(14)
3 3

18

3

14

18

Just need to keep data 
in order



Insert(30)
3

14

18

3

14

18

M = 3 L = 3

30

3

14

18

30
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•When we ‘overflow’ a leaf, we split it into 2 leaves
•Parent gains another child
•If there is no parent (like here), we create one; how do we pick the key 
shown in it?

•Smallest element in right tree

???



Insert(32)
3

14

18

30

18

3

14

18

30

18

3

14

18

30

18

Insert(36)

3

14

18

30

18
Insert(15)

M = 3 L = 3

32

32

36

32

32

36

32

15
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Split leaf again



Insert(16)
3

14

15

18

30

18 32

32

36

3

14

15

18

30

18 32

32

36

18

30

18 32

32

36

M = 3 L = 3

16

3

14

15

16

15

15 32

18
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Split the internal node 
(in this case, the root)

What 
now?



Insert(12,40,45,38)

3

14

15

16

15

18

30

32

32

36

18

3

12

14

15

16

15

18

30

32 40

32

36

38

18

40

45

M = 3 L = 3
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Note: Given the leaves and the structure of the tree, we 
can always fill in internal node keys;
‘the smallest value in my right branch’



Insertion Algorithm

1. Insert the data in its leaf in sorted order

2. If the leaf now has L+1 items, overflow!
– Split the leaf into two nodes:

• Original leaf with  (L+1)/2 smaller items
• New leaf with (L+1)/2 = L/2 larger items

– Attach the new child to the parent
• Adding new key to parent in sorted order

3. If step (2) caused the parent to have M+1 children, overflow!
– …
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Insertion algorithm continued

3. If an internal node has M+1 children
– Split the node into two nodes

• Original node with  (M+1)/2 smaller items
• New node with (M+1)/2 = M/2 larger items

– Attach the new child to the parent
• Adding new key to parent in sorted order

Splitting at a node (step 3) could make the parent overflow too
– So repeat step 3 up the tree until a node doesn’t overflow
– If the root overflows, make a new root with two children

• This is the only case that increases the tree height
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Efficiency of insert

• Find correct leaf: O(log2 M logM n)
• Insert in leaf:  O(L)
• Split leaf: O(L)
• Split parents all the way up to root: O(M logM n)

Total: O(L + M logM n)

But it’s not that bad:
– Splits are not that common (only required when a node is FULL, 

M and L are likely to be large, and after a split, will be half empty)
– Splitting the root is extremely rare
– Remember disk accesses were the name of the game:

O(logM n)
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B-Tree Reminder: Another dictionary

• Before we talk about deletion, just keep in mind overall idea:
– Large data sets won’t fit entirely in memory
– Disk access is slow
– Set up tree so we do one disk access per node in tree
– Then our goal is to keep tree shallow as possible
– Balanced binary tree is a good start, but we can do better 

than log2n height
– In an M-ary tree, height drops to logMn

• Why not set M really really high?  Height 1 tree…
• Instead, set M so that each node fits in a disk block
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Delete(32)

3

12

14

15

16

15

18

30

32 40

32

36

38

18

40

45

3

12

14

15

16

15

18

30

40

18

40

45

And Now for Deletion…

M = 3 L = 3

36

38

3/14/2025 38

Easy case: Leaf still has enough data; just remove



Delete(15)

3

12

14

15

16

15

18

30

36 40

36

38

18

40

45

3

12

14

16 18

30

36 40

36

38

18

40

45

M = 3 L = 3
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Is there a problem?



3

12

14

16

18

30

36 40

36

38

18

40

45

M = 3 L = 3

3

12

14

16

16

18

30

36 40

36

38

18

40

45
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Adopt from neighbor!



Delete(16)

3

12

14

16

14

18

30

36 40

36

38

18

40

45

14

18

30

36 40

36

38

18

40

45

M = 3 L = 3

3

12

14
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Is there a problem?



3

12

14

18

30

36 40

36

38

18

40

45

M = 3 L = 3

14

18

30

36 40

36

38

18

40

45

3

12

14
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Merge with neighbor!

But hey, Is there a problem?



3

12

14

18

30

36 40

36

38

18

40

45

M = 3 L = 3

3

12

14

18

18

30

40

36

38

36

40

45
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Adopt from neighbor!



3

12

14

18

18

30

40

36

38

36

40

45

3

12

18

18

30

40

36

38

36

40

45

M = 3 L = 3
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Delete(14)



Delete(18)

3

12

18

18

30

40

36

38

36

40

45

M = 3 L = 3

3

12

30

40

36

38

36

40

45
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Is there a problem?



3

12

30

40

36

38

36

40

45

M = 3 L = 3

3

12

30

40

36

38

36

40

45
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Merge with neighbor!

But hey, Is there a problem?



3

12

30

40

36

38

36

40

45

36 40

3

12

30

3

36

38

40

45

M = 3 L = 3
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Merge with neighbor!

But hey, Is there a problem?



36 40

3

12

30

36

38

40

45

M = 3 L = 3

36 40

3

12

30

3

36

38

40

45
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Pull out the root!



Deletion Algorithm, part 1

1. Remove the data from its leaf

2. If the leaf now has L/2 - 1, underflow!
– If a neighbor has >  L/2 items, adopt and update parent
– Else merge node with neighbor

• Guaranteed to have a legal number of items
• Parent now has one less node

3. If step (2) caused the parent to have M/2 - 1 children, 
underflow!
– …
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Deletion algorithm (continued)

3. If an internal node has M/2 - 1 children
– If a neighbor has >  M/2 items, adopt and update parent
– Else merge node with neighbor

• Guaranteed to have a legal number of items
• Parent now has one less node, may need to continue 

up the tree

If we merge all the way up through the root, that’s fine unless the 
root went from 2 children to 1
– In that case, delete the root and make child the root
– This is the only case that decreases tree height
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Worst-Case Efficiency of Delete

• Find correct leaf: O(log2 M logM n)
• Remove from leaf:  O(L)
• Adopt from or merge with neighbor: O(L)
• Adopt or merge all the way up to root: O(M logM n)

Total: O(L + M logM n)

But it’s not that bad:
– Merges are not that common
– Disk accesses are the name of the game: O(logM n)
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Insert vs delete comparison

Insert
• Find correct leaf:
• Insert in leaf:
• Split leaf:
• Split parents all the way up to root:

Delete
• Find correct leaf:
• Remove from leaf:
• Adopt/merge from/with neighbor leaf:
• Adopt or merge all the way up to root:

O(log2 M logM n)
O(L)
O(L)
O(M logM n)

O(log2 M logM n)
O(L)
O(L)
O(M logM n)
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B Trees in Java?

For most of our data structures, we have encouraged writing high-
level, reusable code, such as in Java with generics

It is worthwhile to know enough about “how Java works” to 
understand why this is probably a bad idea for B trees
– If you just want a balanced tree with worst-case logarithmic 

operations, no problem
• If M=3, this is called a 2-3 tree 
• If M=4, this is called a 2-3-4 tree

– Assuming our goal is efficient number of disk accesses
• Java has many advantages, but it wasn’t designed for this

The key issue is extra levels of indirection…
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Naïve approach in Java
Even if we assume data items have int keys, you cannot get the 

data representation you want for “really big data” 

interface Keyed {
int getKey();

}
class BTreeNode<E implements Keyed> {
static final int M = 128;
int[]          keys = new int[M-1];
BTreeNode<E>[] children = new BTreeNode[M];
int numChildren = 0;
…

}
class BTreeLeaf<E implements Keyed> {
static final int L = 32;
E[] data = (E[])new Object[L];
int numItems = 0;
…

}
3/14/2025 54



What that looks like in Java
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BTreeNode (Interior node) 
122045

70

BTreeLeaf (Leaf node)

20

(array of M-1 ints)

(array of M refs to 
BTreeNodes)

(array of L refs to 
data objects)

All the red references indicate 
“unnecessary” indirection that 
might be avoided in another 
programming language.

numChildren

children

keys

numItems

data
Note: data objects 
not in contiguous 
memory.

…

…

…



The moral

• The whole idea behind B trees was to keep related data in 
contiguous memory

• But that’s “the best you can do” in Java
– Again, the advantage is generic, reusable code
– But for your performance-critical web-index, not the way to 

implement your B-Tree for terabytes of data

• Other languages (e.g., C++) have better support for “flattening 
objects into arrays”

• Levels of indirection matter!
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Wrap Up!



What Have We Done This Quarter?

• Data Structures
– Classic structures (hash tables, balanced BSTs, binary 

heaps, etc.)
• You now understand these deeply, since you implemented 

many of them! 
• And you know how to analyze them with 𝑂𝑂,Ω,Θ.

– And the ADTs 
– Analyze tradeoffs – there’s not just one “right” answer! 

• Algorithms
– Sorting algorithms (examples of Divide & Conquer)
– Graph algorithms (examples of Greedy Algorithms)
– Effectively using our data structures to solve problems more 

efficiently (e.g. we used data structures in graph algorithms)
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What Else Have We Done This Quarter?

• Parallelism & Concurrency
– Exploit multiple processors
– Fork-Join patterns (maps, reduces, prefixes, packs) 
– Concurrency: share resources safely

• Mixing theory and practice
– Big-𝑂𝑂 analysis is the starting point, and you have more tools 

now (recurrences, worst- vs. best-case, amortization,…)
– But in-practice constant factors, cache behavior, and a 

bunch of other things also matter (and are not captured by 
big-𝑂𝑂)
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What’s Next?

• If you enjoyed shortest paths and MSTs
– Take CSE 421: Algorithms

• If you loved P vs. NP or the sorting lower bound (what 
can’t we do?)
– Take CSE 431:Theory of Computation

• If you liked parallelism & concurrency
– CSE 451: Operating Systems for how scheduling & locks 

actually work
– CSE 452: Distributed Systems for hard concurrency problems.

• If your favorite part was writing and debugging code
– CSE 331 has lots of code, CSE 333 does too.
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Thank You!

• Thank you for a great quarter!
• Thanks to the CSE 332 Staff for a great quarter!
• We hope to see you in the future!
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