CSE 332: Data Structures & Parallelism Lecture 25: Complexity Classes and Tractability

Ruth Anderson

Winter 2025

(Slides adapted from Nathan Brunelle)

Plotting Running Times

Running times we've seen:

- $\Theta(1)$
- $\Theta(\log n)$
- $\Theta(n)$
- $\Theta(n \log n)$
- $\Theta(n^2)$
- $\Theta(2^n)$

Time

Examining Running Times

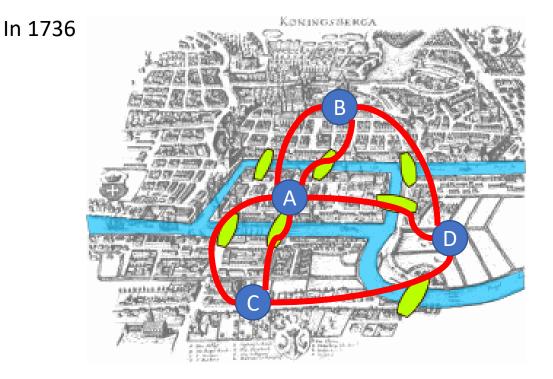
Table 2.1 The running times (rounded up) of different algorithms on inputs of increasing size, for a processor performing a million high-level instructions per second. In cases where the running time exceeds 10²⁵ years, we simply record the algorithm as taking a very long time.

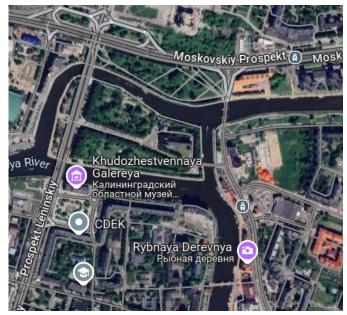
	п	$n \log_2 n$	n ²	n ³	1.5 ⁿ	2^n	<i>n</i> !
n = 10	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	4 sec
n = 30	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	18 min	10 ²⁵ years
n = 50	< 1 sec	< 1 sec	< 1 sec	< 1 sec	11 min	36 years	very long
n = 100	< 1 sec	< 1 sec	< 1 sec	1 sec	12,892 years	10 ¹⁷ years	very long
<i>n</i> = 1,000	< 1 sec	< 1 sec	1 sec	18 min	very long	very long	very long
n = 10,000	< 1 sec	< 1 sec	2 min	12 days	very long	very long	very long
n = 100,000	< 1 sec	2 sec	3 hours	32 years	very long	very long	very long
<i>n</i> = 1,000,000	1 sec	20 sec	12 days	31,710 years	very long	very long	very long

Tractability

- Tractable:
 - Feasible to solve in the "real world"
- Intractable:
 - Infeasible to solve in the "real world"
- Whether a problem is considered "tractable" or "intractable" depends on the use case
 - For machine learning, big data, etc. tractable might mean O(n) or even $O(\log n)$
 - For most applications it's more like $O(n^3)$ or $O(n^2)$
- A strange pattern:
 - Most "natural" problems are either done in small-degree polynomial (e.g. n^2) or else exponential time (e.g. 2^n)
 - It's rare to have problems which require a running time of n^5 , for example

7 Bridges of Königsberg

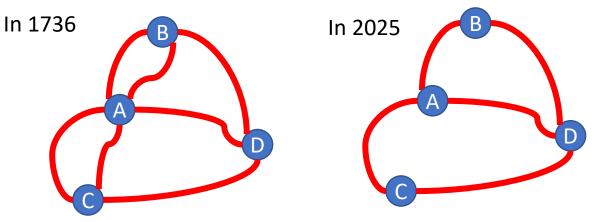




In 2025

The Pregel River runs through the city of Koenigsberg, creating 2 islands. Among these 2 islands and the 2 sides of the river, there are 7 bridges. Is there any path starting at one landmass which crosses each bridge exactly once?

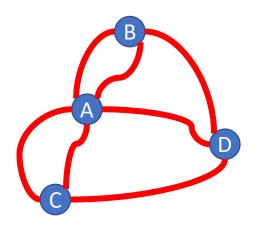
Euler Path Problem



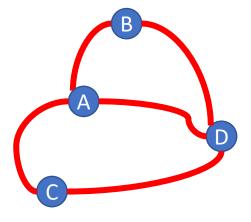
- Path:
 - A sequence of nodes v_1, v_2, \dots such that for every consecutive pair are connected by an edge (i.e. (v_i, v_{i+1}) is an edge for each i in the path)
- Euler Path:
 - A path such that every edge in the graph appears exactly once
 - If the graph is not simple then some pairs need to appear multiple times!
- Euler path problem:
 - Given an undirected graph G = (V, E), does there exist an Euler path for G?

Examples

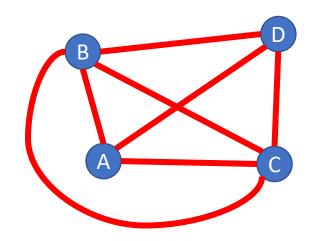
• Which of the graphs below have an Euler path?



No Euler path exists!



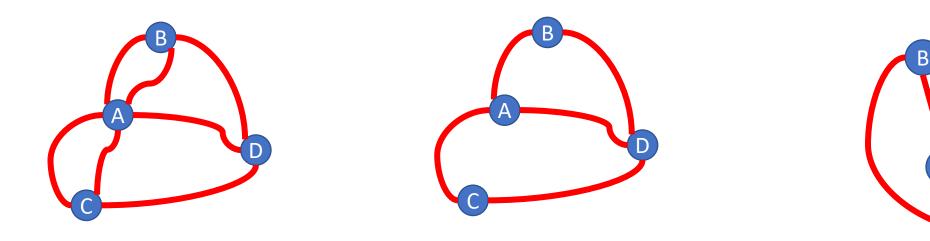
Euler path exists! A, B, D, A, C, D



Euler path exists! A, B, C, D, A, C, B, D

Euler's Theorem

• A graph has an Euler Path if and only if it is connected and has exactly 0 or 2 nodes with odd degree.

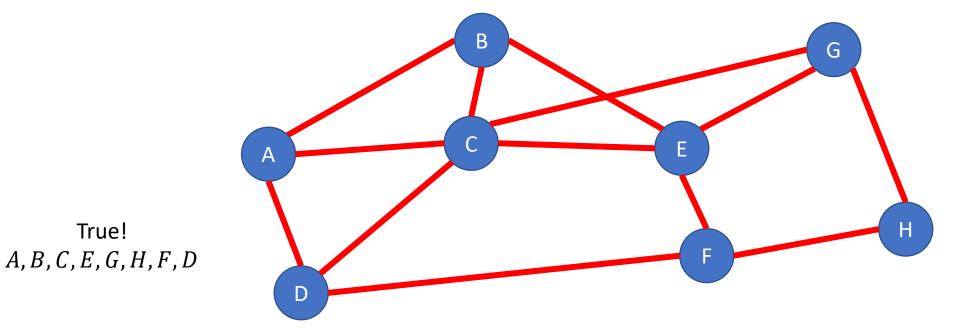


Algorithm for the Euler Path Problem

- Given an undirected graph G = (V, E), does there exist an Euler path for G?
- Algorithm:
 - Check if the graph is connected
 - Check the degree of each node
 - If the number of nodes with odd degree is 0 or 2, return true
 - Otherwise return false
- Running time?

A Seemingly Similar Problem

- Hamiltonian Path:
 - A path that includes every node in the graph exactly once
- Hamiltonian Path Problem:
 - Given a graph G = (V, E), does that graph have a Hamiltonian Path?



10

Algorithms for the Hamiltonian Path Problem

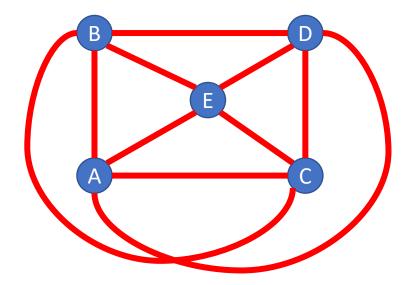
- Option 1:
 - Explore all possible simple paths through the graph
 - Check to see if any of those are length V
- Option 2:
 - Write down every sequence of nodes
 - Check to see if any of those are a path
- Both options are examples of an Exhaustive Search ("Brute Force") algorithm

Option 2: List all sequences, look for a path

- Running time:
 - G = (V, E)
 - Number of permutations of V is |V|!
 - $n! = n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot 2 \cdot 1$
 - How does n! compare with 2^n ?
 - $n! \in \Omega(2^n)$
 - Exponential running time!

Option 1: Explore all simple paths, check for one of length ${\it V}$

- Running time:
 - G = (V, E)
 - Number of paths
 - Pick a first node (|V| choices)
 - Pick a neighbor (up to |V| 1 choices)
 - Pick a neighbor (up to |V| 2 choices)
 - Repeat |V| 1 total times
 - Overall: |V|! paths
 - Exponential running time

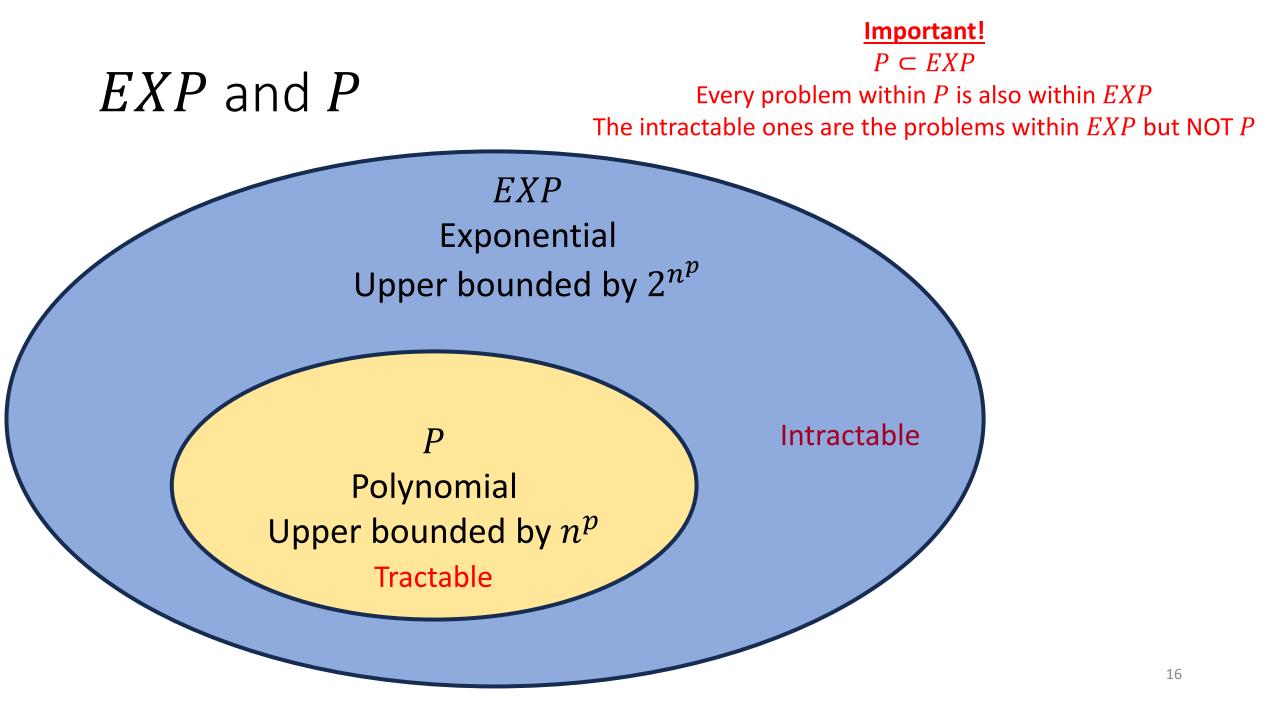


Complexity Classes

- A Complexity Class is a set of problems (e.g. sorting, Euler path, Hamiltonian path)
 - The problems included in a complexity class are those whose most efficient algorithm has a specific upper bound on its running time (or memory use, or...)
- Examples:
 - The set of all problems that can be solved by an algorithm with running time O(n)
 - Contains: Finding the minimum of a list, finding the maximum of a list, buildheap, summing a list, etc.
 - The set of all problems that can be solved by an algorithm with running time $O(n^2)$
 - Contains: everything above as well as comparison based sorting, Euler path
 - The set of all problems that can be solved by an algorithm with running time O(n!)
 - Contains: everything we've seen in this class so far

Complexity Classes and Tractability

- To explore what problems are and are not tractable, we give some complexity classes special names:
- Complexity Class *P*:
 - Stands for "Polynomial"
 - The set of problems which have an algorithm whose running time is $O(n^p)$ for some choice of $p \in \mathbb{R}$.
 - We say all problems belonging to P are "Tractable"
- Complexity Class *EXP*:
 - Stands for "Exponential"
 - The set of problems which have an algorithm whose running time is $O(2^{n^p})$ for some choice of $p \in \mathbb{R}$
 - We say all problems belonging to EXP P are "Intractable"
 - Disclaimer: Really it's all problems outside of *P*, and there are problems which do not belong to *EXP*, but we're not going to worry about those in this class



Important!

Studying Complexity and Tractability

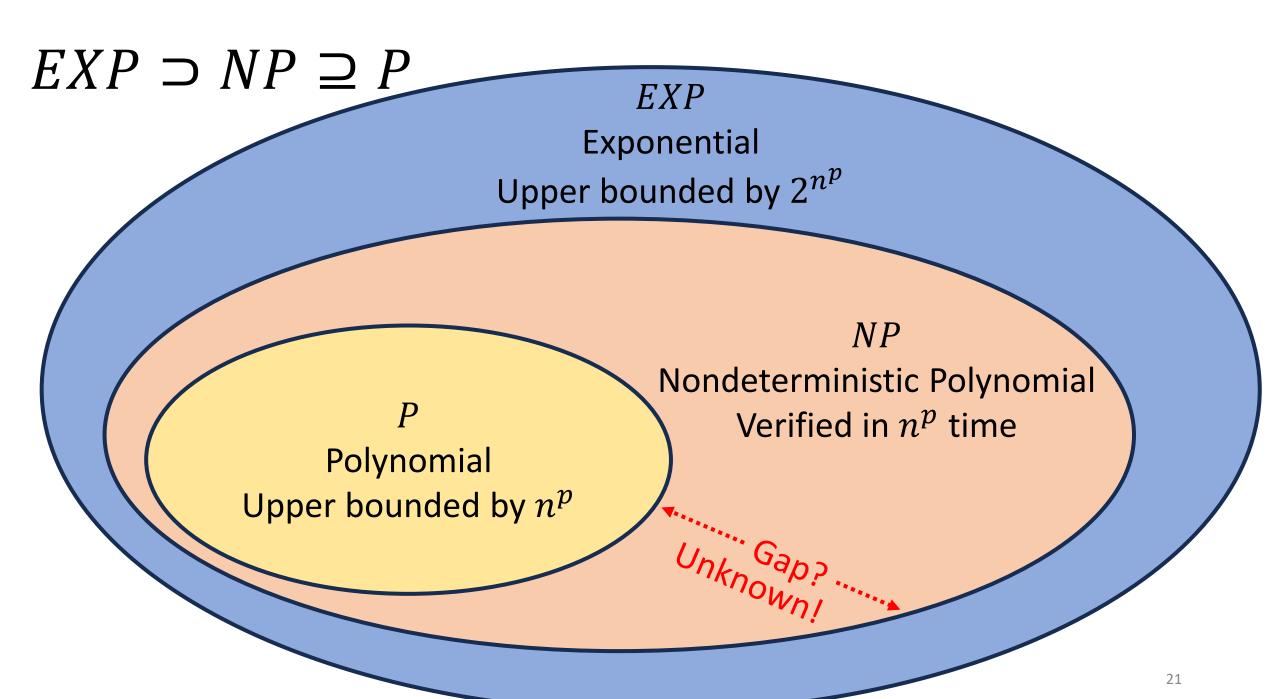
- Organizing problems into complexity classes helps us to reason more carefully and flexibly about tractability
- The goal for each problem is to either
 - Find an efficient algorithm if it exists
 - i.e. show it belongs to P
 - Prove that no efficient algorithm exists
 - i.e. show it does not belong to P
- Complexity classes allow us to reason about sets of problems at a time, rather than each problem individually
 - If we can find more precise classes to organize problems into, we might be able to draw conclusions about the entire class
 - It may be easier to show a problem belongs to class C than to P, so it may help to show that $C \subseteq P$

Some problems in *EXP* seem "easier"

- There are some problems that we do not have polynomial time algorithms to solve, but provided answers are easy to check
- Hamiltonian Path:
 - It's "hard" to look at a graph and determine whether it has a Hamiltonian Path
 - It's "easy" to look at a graph and a candidate path together and determine whether THAT path is a Hamiltonian Path
 - It's easy to **verify** whether a given path is a Hamiltonian path

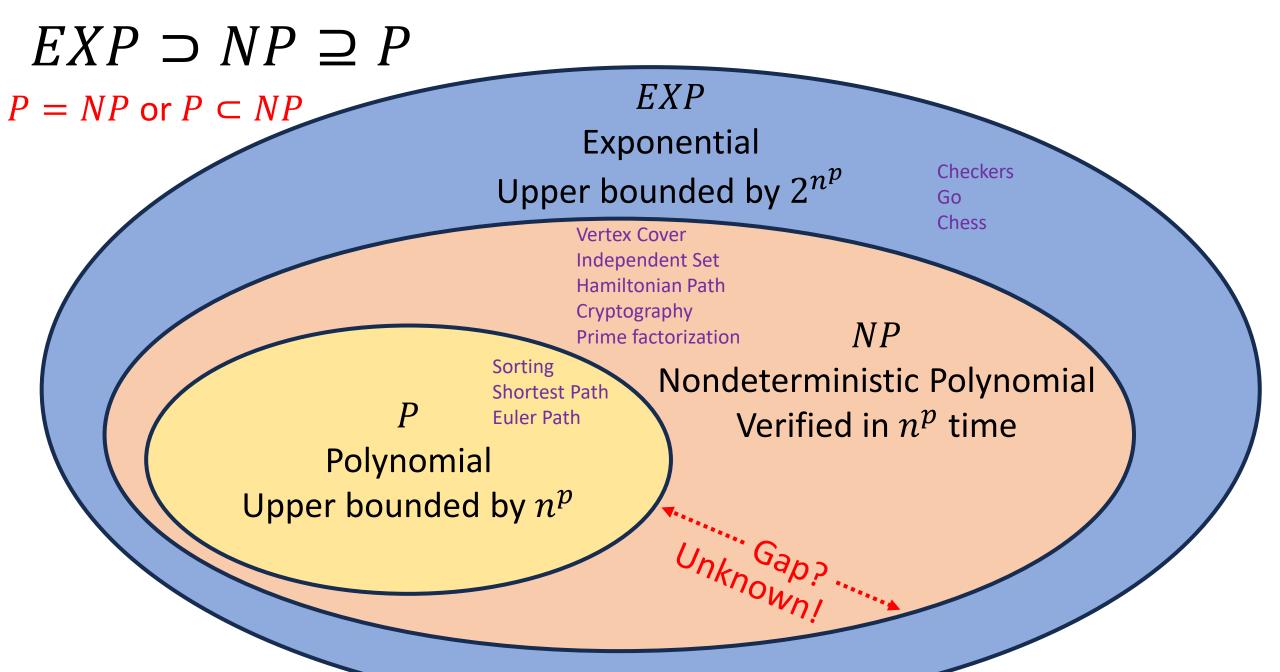
Class NP

- *NP*
 - The set of problems for which a candidate solution can be verified in polynomial time
 - Stands for "Non-deterministic Polynomial"
 - Corresponds to algorithms that can guess a solution (if it exists), that solution is then verified to be correct in polynomial time
 - Can also think of as allowing a special operation that allows the algorithm to magically guess the right choice at each step of an exhaustive search
- $P \subseteq NP$
 - Why?



Solving and Verifying Hamiltonian Path

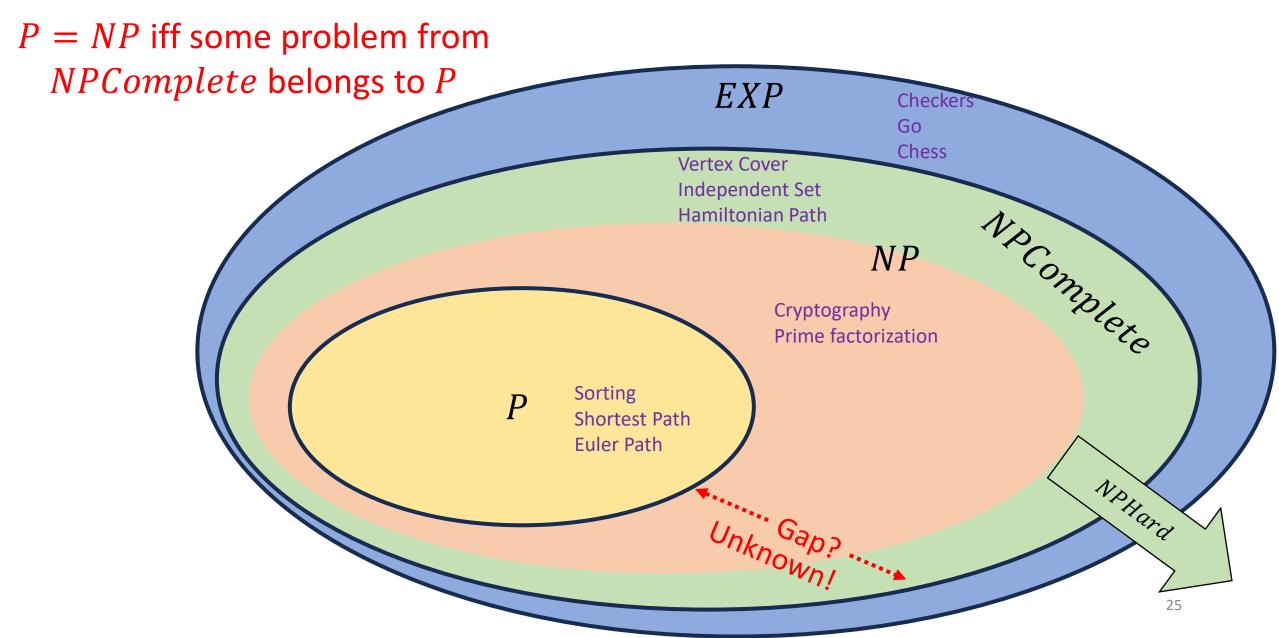
- Give an algorithm to solve Hamiltonian Path
 - Input: G = (V, E)
 - Output: True if G has a Hamiltonian Path
 - Algorithm: Check whether each permutation of V is a path.
 - Running time: |V|!, so does not show whether it belongs to P
- Give an algorithm to verify Hamiltonian Path
 - Input: G = (V, E) and a sequence of nodes
 - Output: True if that sequence of nodes is a Hamiltonian Path
 - Algorithm:
 - Check that each node appears in the sequence exactly once
 - Check that the sequence is a path
 - Running time: $O(V \cdot E)$, so it belongs to NP



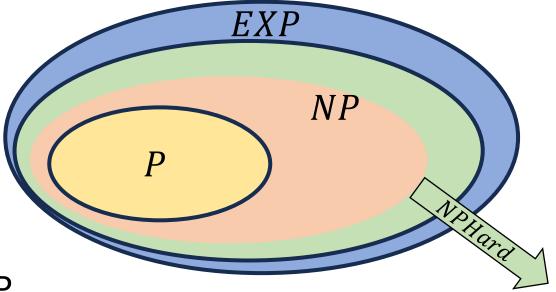
NP-Complete

- A set of "together they stand, together they fall" problems
- The problems in this set either all belong to P, or none of them do
- Intuitively, the "hardest" problems in NP
- Collection of problems from NP that can all be "transformed" into each other in polynomial time
 - Like we could transform independent set to vertex cover, and vice-versa
 - We can also transform vertex cover into Hamiltonian path, and Hamiltonian path into independent set, and ...

$EXP \supset NP \supseteq P$



NP-Hard

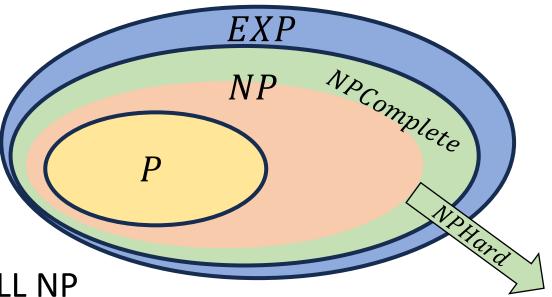


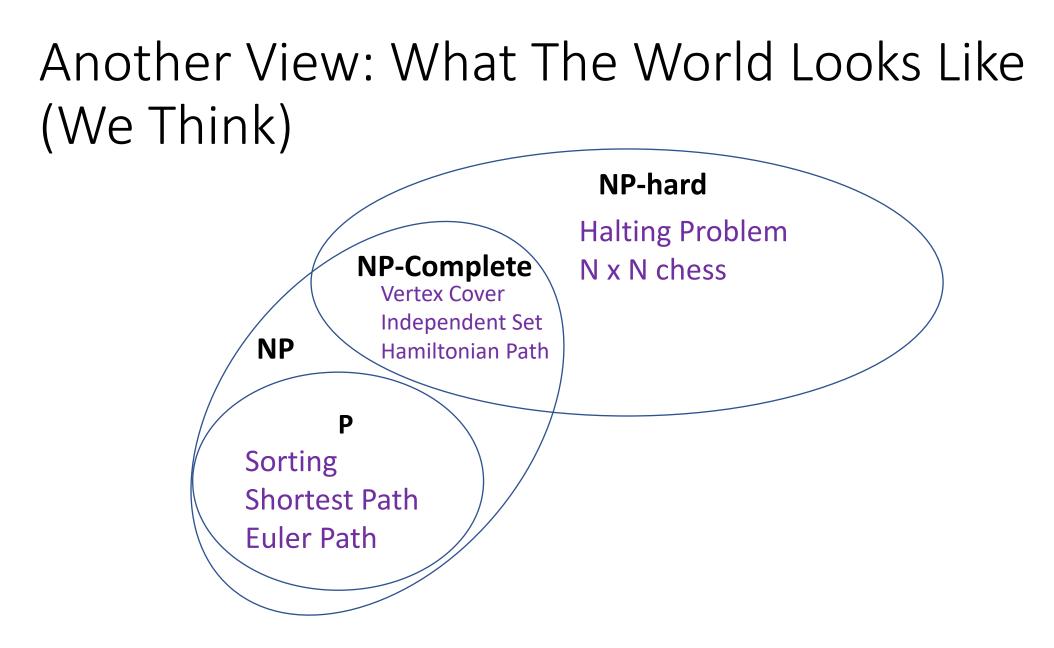
- How can we try to figure out if P=NP?
- Identify problems at least as "hard" as NP
 - If any of these "hard" problems can be solved in polynomial time, then all NP problems can be solved in polynomial time.
- Definition: NP-Hard:
 - *B* is NP-Hard provided EVERY problem within NP reduces to *B* in polynomial time

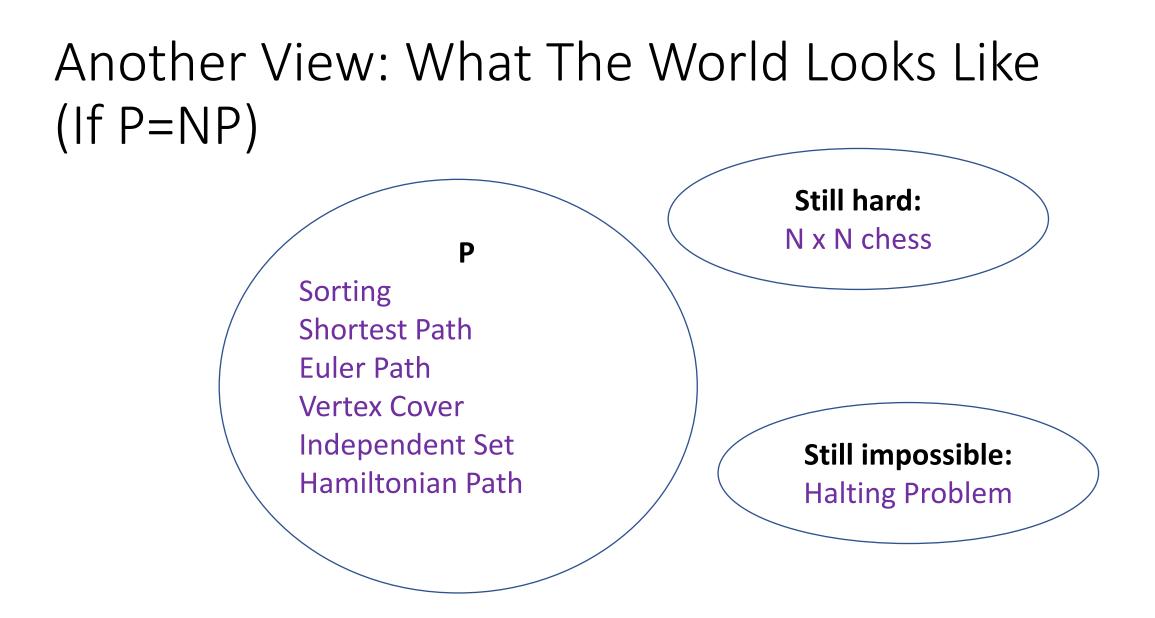
NP-Complete

- "Together they stand, together they fall"
- Problems solvable in polynomial time iff ALL NP problems are
- NP-Complete = NP \cap NP-Hard
- How to show a problem is NP-Complete?
 - Show it belongs to NP
 - Give a polynomial time verifier
 - Show it is NP-Hard
 - Give a reduction from another NP-Hard problem

27







####