CSE 332: Data Structures & Parallelism

Lecture 25: Complexity Classes and
Tractability

Ruth Anderson
Winter 2025
(Slides adapted from Nathan Brunelle)

PlOttlng Runn|ng TlmeS Runn(in)gtimes we’ve seen:
e 01
* O(logn)
* 0(n)
* O(nlogn)
¢ 0(n?)
¢« 02"

Time

Input Size

Examining Running Times

Table 2.1 The running times (rounded up) of different algorithms on inputs of
increasing size, for a processor performing a million high-level instructions per second.
In cases where the running time exceeds 10%° years, we simply record the algorithm as

taking a very long time.

n nlog, n n? n’ il 2t n!
n=10 < 1 sec < 1 sec < 1 sec < 1 sec < 1 sec < 1 sec 4 sec
n=230 < 1 sec <lsec <1 sec < 1 sec < 1 sec 18 min 10%° years
n=>50 < 1 sec < 1 sec < 1 sec < 1 sec 11 min 36 years very long
n=100 < 1 sec < 1 sec < 1 sec 1 sec 12,892 years 10'7 years very long

n=1,000 < 1 sec < 1 sec 1 sec 18 min very long very long very long
n = 10,000 < 1 sec < 1 sec 2 min 12 days very long very long very long
n = 100,000 < 1 sec 2 sec 3 hours 32 years very long very long very long
n = 1,000,000 1 sec 20 sec 12 days 31,710 years very long very long very long

Tractability

e Tractable:
e Feasible to solve in the “real world”

* Intractable:
* Infeasible to solve in the “real world”
 Whether a problem is considered “tractable” or “intractable” depends on
the use case
* For machine learning, big data, etc. tractable might mean O(n) or even O (logn)
* For most applications it’s more like 0(n>) or 0(n?)
* A strange pattern:

* Most “natural” problems are either done in small-degree polynomial (e.g. n?) or
else exponential time (e.g. 2™)

e It’s rare to have problems which require a running time of n>, for example

/ Bridges of Konigsberg

In 1736 B . :E-\..._--\-\.|l«.|l-....:j|-_|-::._'n . . I:".. -

ST AN LY
I*LLIT?'I'I:H li 3 !';"”1| I.‘!"- 1 5 e e, o

1 -'iEﬁ'&ﬁ. 5 “ -' I.': : a AL :

7 e R
s

TR

= . Il; m Sy 3
=Moskoyskiy:Prospekt{@=mosk

g= r

LERE
-l; o "I \ I| . - ; l ! ¢ ;. \ n\"“‘ .‘I'\
! J Rybnaya'Derevnya L3
PbiGHan fepesHa Ng#l/ = '¢
In 2025 [fjias sl o T

The Pregel River runs through the city of Koenigsberg, creating 2 islands. Among
these 2 islands and the 2 sides of the river, there are 7 bridges. Is there any path
starting at one landmass which crosses each bridge exactly once? 5

In 2025

Euler Path Problem

e Path:

* A sequence of nodes v4, V5, ... such that for every consecutive pair are
connected by an edge (i.e. (v;, V;41) is an edge for each i in the path)

e Euler Path:

* A path such that every edge in the graph appears exactly once
* If the graph is not simple then some pairs need to appear multiple times!

* Euler path problem:
e Given an undirected graph G = (V, E), does there exist an Euler path for G?

Examples

* Which of the graphs below have an Euler path?

Euler path exists!
No Euler path exists! AB,D,AC,D

Euler path exists!
AB,C,D,AC,B,D

Euler’s Theorem

* A graph has an Euler Path if and only if it is connected and has exactly
0 or 2 nodes with odd degree.

Algorithm for the Euler Path Problem

* Given an undirected graph ¢ = (V, E), does there exist an Euler path
for G?

* Algorithm:
* Check if the graph is connected
* Check the degree of each node
* |f the number of nodes with odd degree is 0 or 2, return true
* Otherwise return false

* Running time?

A Seemingly Similar Problem

* Hamiltonian Path:
* A path that includes every node in the graph exactly once

* Hamiltonian Path Problem:
* Given a graph G = (V, E), does that graph have a Hamiltonian Path?

True!
ABCEGH,F,D

10

Algorithms for the Hamiltonian Path Problem

* Option 1:
* Explore all possible simple paths through the graph
* Check to see if any of those are length V

* Option 2:
* Write down every sequence of nodes
* Check to see if any of those are a path

* Both options are examples of an Exhaustive Search (“Brute Force”)
algorithm

Option 2: List all sequences, look for a path

* Running time:
¢ =(V,E)
Number of permutations of V is |V |[!
enl=n-n-1)-n—-2)-..-2-1
How does n! compare with 2™?
« nl € Q(2M)
Exponential running time!

Option 1: Explore all simple paths, check for
one of length V

* Running time:

. G = (V,E)

 Number of paths
* Pick a first node (|V| choices)
* Pick a neighbor (up to |V| — 1 choices)
* Pick a neighbor (up to |V| — 2 choices)
eRepeat || — 1 total times
* Overall: |V|! paths

e Exponential running time

13

Complexity Classes

* A Complexity Class is a set of problems (e.g. sorting, Euler path,
Hamiltonian path)

* The problems included in a complexity class are those whose most efficient
algorithm has a specific upper bound on its running time (or memory use, or...)

* Examples:

* The set of all problems that can be solved by an algorithm with running time O (n)

* Contains: Finding the minimum of a list, finding the maximum of a list, buildheap, summing a
list, etc.

* The set of all problems that can be solved by an algorithm with running time 0(n?)
e Contains: everything above as well as comparison based sorting, Euler path

* The set of all problems that can be solved by an algorithm with running time O(n!)
e Contains: everything we’ve seen in this class so far

Complexity Classes and Tractability

* To explore what problems are and are not tractable, we give some
complexity classes special names:

* Complexity Class P:
e Stands for “Polynomial”

* The set of problems which have an algorithm whose running time is O (n?) for some
choice of p € R.

* We say all problems belonging to P are “Tractable”

* Complexity Class EXP:

e Stands for “Exponentia

* The set of problems which have an algorithm whose running time is 0(2"p) for
some choiceof p € R

* We say all problems belonging to EXP — P are “Intractable”

* Disclaimer: Really it’s all problems outside of P, and there are problems which do not belong
to EXP, but we’re not going to worry about those in this class

III

Important!
P c EXP

EXP a N d P Every problem within P is also within EXP

The intractable ones are the problems within EXP but NOT P

P
Polynomial
Upper bounded by n?

Tractable

16

Important!
Some of the problems we’ve listed in EXP could also be
M em b ers members of P. Since membership is determined by a problem’s
most efficient algorithm, knowing if a problem belongs to P
requires knowing the best algorithm possible!

Sorting
Shortest Path
Euler Path

Tractable

17

Studying Complexity and Tractability

* Organizing problems into complexity classes helps us to reason more
carefully and flexibly about tractability

* The goal for each problem is to either
* Find an efficient algorithm if it exists
* j.e. show it belongsto P

* Prove that no efficient algorithm exists
* j.e. show it does not belong to P

* Complexity classes allow us to reason about sets of problems at a
time, rather than each problem individually

* |f we can find more precise classes to organize problems into, we might be
able to draw conclusions about the entire class

* |t may be easier to show a problem belongs to class C than to P, so it may
help to show that C € P

Some problems in EXP seem “easier”

* There are some problems that we do not have polynomial time
algorithms to solve, but provided answers are easy to check

e Hamiltonian Path:

* |It's “hard” to look at a graph and determine whether it has a Hamiltonian
Path

* |t's “easy” to look at a graph and a candidate path together and determine
whether THAT path is a Hamiltonian Path

* It’s easy to verify whether a given path is a Hamiltonian path

Class NP

* NP
* The set of problems for which a candidate solution can be verified in
polynomial time

* Stands for “Non-deterministic Polynomial”

* Corresponds to algorithms that can guess a solution (if it exists), that solution is then
verified to be correct in polynomial time

* Can also think of as allowing a special operation that allows the algorithm to magically
guess the right choice at each step of an exhaustive search

e PC NP
* Why?

EXPODONP2OP

NP

Nondeterministic Polynomial
P Verified in nP time
Polynomial

Upper bounded by n?

....
....
L 4

L
...
'.
I

Solving and Veritying Hamiltonian Path

* Give an algorithm to solve Hamiltonian Path
* Input: G = (V,E)
e Output: True if G has a Hamiltonian Path

* Algorithm: Check whether each permutation of V is a path.
* Running time: |V|!, so does not show whether it belongs to P

* Give an algorithm to verify Hamiltonian Path
* Input: ¢ = (V, E) and a sequence of nodes
* Output: True if that sequence of nodes is a Hamiltonian Path
e Algorithm:
* Check that each node appears in the sequence exactly once

* Check that the sequence is a path
* Runningtime: O(V - E), so it belongs to NP

EXPODONP2OP

P=NPorP cNP

Vertex Cover
Independent Set
Hamiltonian Path
Cryptography

Prime factorization NP

Sorting « o 4. .
chortect et N Nondeterministic Polynomial
P uler Path Verified in nP time
Polynomial

Upper bounded by n?

-
N,
Y
v
Y

L
...
'.
I

NP-Complete

* A set of “together they stand, together they fall” problems
* The problems in this set either all belong to P, or none of them do
* Intuitively, the “hardest” problems in NP

* Collection of problems from NP that can all be “transformed” into
each other in polynomial time
* Like we could transform independent set to vertex cover, and vice-versa

* We can also transform vertex cover into Hamiltonian path, and Hamiltonian
path into independent set, and ...

EXP ODONP2OP

P = NP iff some problem from
NPComplete belongs to P

Vertex Cover
Independent Set
Hamiltonian Path

NP

Cryptography
Prime factorization

P Sorting
Shortest Path

Euler Path

IS
ey
5
e

L

NP-Hard

* How can we try to figure out if P=NP?

* [dentify problems at least as “hard” as NP

* If any of these “hard” problems can be solved in
polynomial time, then all NP problems can be solved in
polynomial time.

e Definition: NP-Hard:

* B is NP-Hard provided EVERY problem within NP
reduces to B in polynomial time

EXP

NP

NP-Complete

* “Together they stand, together they fall”

* Problems solvable in polynomial time iff ALL NP
problems are

* NP-Complete = NP N NP-Hard

* How to show a problem is NP-Complete?

* Show it belongs to NP
* Give a polynomial time verifier

e Show it is NP-Hard

* Give a reduction from another NP-Hard problem

Another View: What The World Looks Like
(We Think)

NP-hard

Halting Problem

NP-Complete\ N x N chess

Vertex Cover
Independent Set
Hamiltonian Path

P
Sorting

Shortest Path
Euler Path

28

Another View: What The World Looks Like

(If P=NP)
Still hard:
N x N chess
Still impossible:
Halting Problem

P

Sorting

Shortest Path
Euler Path
Vertex Cover
Independent Set
Hamiltonian Path

29

	CSE 332: Data Structures & Parallelism��Lecture 25: Complexity Classes and Tractability
	Plotting Running Times
	Examining Running Times
	Tractability
	7 Bridges of Königsberg
	Euler Path Problem
	Examples
	Euler’s Theorem
	Algorithm for the Euler Path Problem
	A Seemingly Similar Problem
	Algorithms for the Hamiltonian Path Problem
	Option 2: List all sequences, look for a path
	Option 1: Explore all simple paths, check for one of length 𝑉
	Complexity Classes
	Complexity Classes and Tractability
	𝐸𝑋𝑃 and 𝑃
	Members
	Studying Complexity and Tractability
	Some problems in 𝐸𝑋𝑃 seem “easier”
	Class 𝑁𝑃
	𝐸𝑋𝑃⊃𝑁𝑃⊇𝑃
	Solving and Verifying Hamiltonian Path
	𝐸𝑋𝑃⊃𝑁𝑃⊇𝑃
	NP-Complete
	𝐸𝑋𝑃⊃𝑁𝑃⊇𝑃
	NP-Hard
	NP-Complete
	Another View: What The World Looks Like (We Think)
	Another View: What The World Looks Like �(If P=NP)

