CSE 332: Data Structures & Parallelism

Lecture 23: Minimum Spanning Trees

Ruth Anderson
Winter 2025

Trees as graphs

When talking about graphs,

we say a tree is a graph that is:

— undirected
— acyclic
— connected

2/10/2025

Example:

Minimum Spanning Trees
Given an undirected graph G=(V,E), find a graph G’=(V, E’) such
that:
— B’ is a subset of E

— G’ is connected G’ 1S 2 minimum

— G’ has no cycles spanning tree.
= [E=V]-1

- (u,v)ekE’ is minimal

Applications:
« Example: Electrical wiring for a house or clock wires on a chip

« Example: A road network if you cared about asphalt cost rather
than travel time

3/05/2025

Find the MST

3/05/2025 4

Two Different Approaches

Prim’s Algorithm Kruskals’s Algorithm
Almost identical to Dijkstra’s Completely different!

3/05/2025

Prim’s algorithm

Idea: Grow a tree by picking a vertex from the unknown set that
has the smallest cost. Here cost = cost of the edge that
connects that vertex to the known set. Pick the vertex with the
Smallest cost that connects “known” to “unknown.”

A node-based greedy algorithm
Builds MST by greedily adding nodes

G T T —
(’r y

known

3/05/2025 7

Prim’s Algorithm vs. Dijkstra’s

Recall:

Dijkstra picked the unknown vertex with smallest cost where
cost = distance to the source.

Prim’s pick the unknown vertex with smallest cost where
cost = distance from this vertex to the known set (in other words,
the cost of the smallest edge connecting this vertex to the known
set)

— Otherwise identical
— Compare to slides in Dijkstra lecture!

3/05/2025 8

Prim’s Algorithm for MST

1. Foreachnode v, set v.cost = 00 and v.known = false

2. Choose any node v. (this is like your “start” vertex in Dijkstra)
a) Mark v as known

b) For each edge (v,u) with weight w:
setu.cost=w and u.prev=v

3. While there are unknown nodes in the graph
a) Select the unknown node v with lowest cost
b) Mark v as known and add (v, v.prev) to output (the MST)
c) Foreachedge (v,u) with weight w, where u is unknown:
i1f(w < u.cost) {
u.cost = w;

u.prev = v;

3/05/2025 9

Example: Find MST using Prim’s

vertex | known? cost prev

Order added to known set:

@QIMMO|O| @

3/05/2025 10

Find MST using) 3 10
Prim’s

(\ 9

[\
X

V |Kwn |Distance path

vl
v2 ‘ = “b
v3
v4
A

vb
v7 Total Cost:

Order Declared Known:
Vi

3/05/2025 18

Prim’s Analysis

 Correctness
— Intuitively similar to Dijkstra

« Run-time

— Same as Dijkstra
— O(|E|1og |V]) using a priority queue

3/05/2025

19

Kruskal’'s MST Algorithm

|dea: Grow a forest out of edges that do not create a cycle. Pick an
edge with the smallest weight.

(A

3/05/2025 20

Kruskal’s Algorithm for MST

An edge-based greedy algorithm
Builds MST by greedily adding edges

1. Initialize with
« empty MST
. all vertices marked unconnected
 all edges unmarked
2. While all vertices are not connected
a. Pick the lowest cost edge (u,v) and mark it

b. Ifuand v are not already connected, add (u,v) to the MST
and mark u and v as connected to each other

3/05/2025 21

Aside: Union-Find aka Disjoint Set ADT

* Union(x,y) — take the union of two sets named x and y
— Given sets: {3,5,7}, {4,2,8}, {9}, {1,6}
— Union(5,1)
Result: {3,5,7,1,6}, {4,2,8}, {9},
To perform the union operation, we replace sets xand y by (x U y)

* Find(x) — return the name of the set containing x.
— Given sets: {3,5,7,1,6}, {4,2,8}, {9},
— Find(1) returns 5
— Find(4) returns 8

 We can do Union in constant time.
 We can get Find to be amortized constant time

(worst case O(log n) for an individual Find operation).
3/05/2025 22

Kruskal’s pseudo code

void Graph: :kruskal () {
int edgesAccepted = 0;
DisjSet s (NUM VERTICES) ;

while (edgesAccepted < NUM VERTICES - 1) {

e = smallest weight edge not deleted yet;

// edge e = (u, v)

uset = s.find(u) ; «—

vset = s.find(v) ;
if (uset !'= vset) {
edgesAccepted++;

s.unionSets (uset, vset);

\

3/05/2025

23

Example: Find MST using Kruskal’s

Edges in sorted order:
. (A,D), (C,D), (B,E), (D,E)
A,B), (C,F), (A,C)
E,G)
D,G), (B,D)
D,F)
0: (F,G)

P U e e

2
3:
S5:
6:
1

Output:

Note: At each step, the union/find sets are the trees in the forest

3/05/2025 26

Find MST using Kruskal’s

Total Cost:

 Now find the MST using Prim’s method.
 Under what conditions will these methods give the same result?

3/05/2025 35

Correctness

Kruskal’s algorithm is clever, simple, and efficient
— But does it generate a minimum spanning tree?
— How can we prove it?

First: it generates a spanning tree

— Intuition: Graph started connected and we added every edge
that did not create a cycle

— Proof by contradiction: Suppose u and v are disconnected in
Kruskal's result. Then there’s a path from u to v in the initial
graph with an edge we could add without creating a cycle.
But Kruskal would have added that edge. Contradiction.

Second: There is no spanning tree with lower total cost...

3/05/2025 37

The inductive proof set-up

Let F (stands for “forest”) be the set of edges Kruskal has added at
some point during its execution.

Claim: F is a subset of one or more MSTs for the graph
(Therefore, once |F|=|V|-1, we have an MST.)

Proof: By induction on |F|

Base case: |F|=0: The empty set is a subset of all MSTs

Inductive case: |F|=k+1: By induction, before adding the (k+1)t
edge (call it e), there was some MST T such that F-{e} c T ...

3/05/2025 38

Staying a subset of some MST

Claim: F is a subset of one or
more MSTs for the graph

Sofar. F-{e}cT:

Two disjoint cases:

« If{e}c T: Then F < T and we're done

» Else e forms a cycle with some simple path (call it p) in T
— Must be since T is a spanning tree

3/05/2025 39

Staying a subset of some MST
Claim: F is a subset of one or /

more MSTs for the graph

Sofar: F-{e}c< T and
e forms acycle withpc T \

 There must be an edge e2 on p such thate2is notin F
— Else Kruskal would not have added e

« Claim: e2.weight == e.weight

3/05/2025 40

Staying a subset of some MST
Claim: F is a subset of one or /

more MSTs for the graph

Sofar: F-{e}cT
e forms acyclewithpcT
e2onpisnotinF \

« Claim: e2.weight == e.weight
— If e2.weight > e.weight, then T is not an MST because
T-{e2}+{e} is a spanning tree with lower cost: contradiction

— If e2.weight < e.weight, then Kruskal would have already
considered e2. It would have added it since T has no cycles
and F-{e} c T. Bute2is notin F: contradiction

3/05/2025 41

Staying a subset of some MST
Claim: F is a subset of one or /

more MSTs for the graph

Sofar: F-{e}cT

e forms acyclewithpcT
e2onpisnotinF \

e2.weight == e.weight

« Claim: T-{e2}+{e}is an MST
— It's a spanning tree because p-{e2}+{e} connects the same
nodes as p
— It's minimal because its cost equals cost of T, an MST
 Since F c T-{e2}+{e}, F is a subset of one or more MSTs
Done.
3/05/2025 42

	CSE 332: Data Structures & Parallelism��Lecture 23: Minimum Spanning Trees
	Trees as graphs
	Minimum Spanning Trees
	Find the MST
	Two Different Approaches
	Prim’s algorithm
	Prim’s Algorithm vs. Dijkstra’s
	Prim’s Algorithm for MST
	Example: Find MST using Prim’s
	Find MST using Prim’s
	Prim’s Analysis
	Kruskal’s MST Algorithm
	Kruskal’s Algorithm for MST
	Aside: Union-Find aka Disjoint Set ADT
	Kruskal’s pseudo code
	Example: Find MST using Kruskal’s
	Find MST using Kruskal’s
	Correctness
	The inductive proof set-up
	Staying a subset of some MST
	Staying a subset of some MST
	Staying a subset of some MST
	Staying a subset of some MST

