CSE 332: Data Structures & Parallelism Lecture 19: Parallel Prefix & Pack

Ruth Anderson Winter 2025

Outline

Done:

- Simple ways to use parallelism for counting, summing, finding
- Analysis of running time and implications of Amdahl's Law
- Now: Clever ways to parallelize more than is intuitively possible - Parallel prefix:
 - This "key trick" typically underlies surprising parallelization
 - Enables other things like packs (aka filters)

The prefix-sum problem

Given int[] input, produce int[] output where:

output[i] = input[0]+input[1]+...+input[i]

Sequential can be a CSE142 exam problem:

```
int[] prefix_sum(int[] input) {
    int[] output = new int[input.length];
    output[0] = input[0];
    for(int i=1; i < input.length; i++)
        output[i] = output[i-1]+input[i];
    return output;
}</pre>
```

Does not seem parallelizable

- Work: O(n), Span: O(n)
- This algorithm is sequential, but a different algorithm has Work: O(n), Span: O(log n)

Parallel prefix-sum

- The parallel-prefix algorithm does two passes
 - Each pass has O(n) work and $O(\log n)$ span
 - So in total there is O(n) work and $O(\log n)$ span
 - So like with array summing, parallelism is n/log n
 - An exponential speedup
- First pass builds a tree bottom-up: the "up" pass
- Second pass traverses the tree top-down: the "down" pass

Local bragging

Historical note:

- Original algorithm due to R. Ladner and M. Fischer at UW in 1977
- Richard Ladner joined the UW faculty in 1971 and hasn't left

Parallel Prefix: The Up Pass

We build want to build a binary tree where

- Root has sum of the range [x,y)
- If a node has sum of [lo,hi) and hi>lo,
 - Left child has sum of [lo,middle)
 - Right child has sum of [middle,hi)
 - A leaf has sum of [i,i+1), which is simply input[i]

It is critical that we actually <u>create the tree</u> as we will need it for the down pass

- We do not need an actual linked structure
- We could use an array as we did with heaps

Analysis of first step: Work = Span =

The algorithm, part 1

Specifically.....

- 1. Propagate 'sum' up: Build a binary tree where
 - Root has sum of input[0]..input[n-1]
 - Each node has sum of input[lo]..input[hi-1]
 - Build up from leaves; parent.sum=left.sum+right.sum
 - A leaf's sum is just it's value; input[i]

This is an easy fork-join computation: combine results by actually building a binary tree with all the sums of ranges

- Tree built bottom-up in parallel
- Could be more clever; ex. Use an array as tree representation like we did for heaps

Analysis of first step: O(n) work, $O(\log n)$ span

The algorithm, part 2

- 2. Propagate 'fromleft' down:
 - Root given a fromLeft of 0
 - Node takes its fromLeft value and
 - Passes its left child the same **fromLeft**
 - Passes its right child its fromLeft plus its left child's sum (as stored in part 1)
 - At the leaf for array position i,
 output[i]=fromLeft+input[i]

This is an easy fork-join computation: traverse the tree built in step 1 and produce no result (the leaves assign to output)

Invariant: fromLeft is sum of elements left of the node's range

Analysis of first step: O(n) work, $O(\log n)$ span

Analysis of second step:

Total for algorithm:

2/24/2025

The algorithm, part 2

- 2. Propagate 'fromleft' down:
 - Root given a fromLeft of 0
 - Node takes its fromLeft value and
 - Passes its left child the same **fromLeft**
 - Passes its right child its fromLeft plus its left child's sum (as stored in part 1)
 - At the leaf for array position i,
 output[i]=fromLeft+input[i]

This is an easy fork-join computation: traverse the tree built in step 1 and produce no result (the leaves assign to output)

Invariant: fromLeft is sum of elements left of the node's range

Analysis of first step: O(n) work, $O(\log n)$ span Analysis of second step: O(n) work, $O(\log n)$ span Total for algorithm: O(n) work, $O(\log n)$ span 2/24/2025

Sequential cut-off

Adding a sequential cut-off isn't too bad:

- **Step One**: Propagating Up the sums:
 - Have a leaf node just hold the sum of a range of values instead of just one array value (Sequentially compute sum for that range)
 - The tree itself will be shallower
- **Step Two**: Propagating Down the **fromLefts**:
 - Have leaf compute prefix sum sequentially over its [lo,hi):
 output[lo] = fromLeft + input[lo];
 for(i=lo+1; i < hi; i++)
 output[i] = output[i-1] + input[i]</pre>

Parallel prefix, generalized

Just as sum-array was the simplest example of a common pattern, prefix-sum illustrates a pattern that arises in many, many problems

- Minimum, maximum of all elements to the left of i
- Is there an element to the left of *i* satisfying some property?
- Count of elements to the left of i satisfying some property
 This last one is perfect for an efficient parallel pack...
 - Perfect for building on top of the "parallel prefix trick"

Pack (think "Filter")

[Non-standard terminology]

Given an array input, produce an array output containing only elements such that f(element) is true

Example: input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]

f: ``is element > 10"
output [17, 11, 13, 19, 24]

Parallelizable?

- Determining *whether* an element belongs in the output is easy
- But determining <u>where</u> an element belongs in the output is hard; seems to depend on previous results....

Parallel Pack = (Soln) parallel map + parallel prefix + parallel map

- 1. Parallel map to compute a bit-vector for true elements: input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24] bits [1, 0, 0, 0, 1, 0, 1, 1, 0, 1]
- 2. Parallel-prefix sum <u>on the bit-vector</u>: bitsum [1, 1, 1, 1, 2, 2, 3, 4, 4, 5]
- **3. Parallel map** to produce the output: output [17, 11, 13, 19, 24]

output = new array of size bitsum[n-1]
FORALL(i=0; i < input.length; i++) {</pre>

}

Pack comments

- First two steps can be combined into one pass
 - Just using a different base case for the prefix sum
 - No effect on asymptotic complexity
- Can also combine third step into the down pass of the prefix sum
 - Again no effect on asymptotic complexity
- Analysis: O(n) work, $O(\log n)$ span
 - 2 or 3 passes, but 3 is a constant ©
- Parallelized packs will help us parallelize quicksort. (see reading)