CSE 332: Data Structures & Parallelism
Lecture 19: Parallel Prefix & Pack

Ruth Anderson
Winter 2025

Outline

Done:
— Simple ways to use parallelism for counting, summing, finding
— Analysis of running time and implications of Amdahl’s Law

Now: Clever ways to parallelize more than is intuitively possible

— Parallel prefix:
» This “key trick” typically underlies surprising parallelization
» Enables other things like packs (aka filters)

2/24/2025 2

The prefix-sum problem

Given int[] input, produce int[] output where:
output[i] = input[0]+input[l]+.+input[i]

input[_ 6 [4 [16 [10 [16 [14 [2 | 8 |
output[6 [10 T 26 [36 [52 | 66 [68 | 76 |

Sequential can be a CSE142 exam problem:
int[] prefix sum(int[] input) {
int[] output = new int[input.length];
output[0] = input[0];
for(int i=1; i < input.length; i++)
output[i] = output[i-1]+input[i];
return output;

}
Does not seem parallelizable
— Work: O(n), Span: O(n)
— This algorithm is sequential, but a different algorithm has
Work: O(n), Span: O(1og n)

2/24/2025

Parallel prefix-sum

» The parallel-prefix algorithm does two passes
— Each pass has O(n) work and O(log n) span
— So in total there is O(n) work and O(1og n) span
— So like with array summing, parallelism is n/1og n

* An exponential speedup
» First pass builds a tree bottom-up: the “up” pass

» Second pass traverses the tree top-down: the “down” pass

2/24/2025

Local bragging

Historical note:
— Original algorithm due to R. Ladner and M. Fischer at UW in 1977
— Richard Ladner joined the UW faculty in 1971 and hasn’t left

1
-

19687 19737 recent

2/24/2025 5

Parallel Prefix: The Up Pass

We build want to build a binary tree where
* Root has sum of the range [X,y)
* If a node has sum of [lo,hi) and hi>lo,
— Left child has sum of [lo,middle)
— Right child has sum of [middle,hi)
— A leaf has sum of [i,i+1), which is simply input]i]

It is critical that we actually create the tree as we will

need it for the down pass
 We do not need an actual linked structure
 We could use an array as we did with heaps

Analysis of first step: Work = Span =

2/24/2025

The algorithm, part 1

Specifically.....

1. Propagate ‘sum’ up: Build a binary tree where
— Root has sum of input[0] . .input[n-1]
— Each node has sum of input[lo] . .input[hi-1]
« Build up from leaves; parent.sum=left.sum+right.sum
— Aleaf's sumis justit's value; input[i]

This is an easy fork-join computation: combine results by actually
building a binary tree with all the sums of ranges

— Tree built bottom-up in parallel

— Could be more clever; ex. Use an array as tree representation
like we did for heaps

Analysis of first step: O(n) work, O(1og n) span

2/24/2025 7

The (completely non-obvious) idea:

Do an initial pass to gather range 0,8

information, enabling us to do a sum ,

second pass to get the answer fromleft \

. ’

First we’ll gather range 0,4 range 4,8

the ‘sum’ for each o sum

recursive block fromleft fromleft
range 0,2 range 24 range 4,6 range 6,8
sum sum sum sum
fromleft fromleft fromleft fromleft
r 0,1 r 1,2 r 2,3 r34 |[[r45 ||r 5,6 r 6,7 r 7.8
S S S S S S S S
f f f f f f f f

input 6 4 16 10 16 14 2 8
output

2/24/2025

First pass range 0,8
sum 76
f left
For each node, get / rom’e \
the sum of all values
in its range; range 04 range 4,8
ropagate sum u sum 36 sum
propag P fromleft fromleft
from leaves / \ / \
Will work range 0,2 range 24 range 4,6 range 6,8
like parallel | SUM 0 sum sum 0 sum 0
fromleft fromleft fromleft fromleft
sum, but
recording /\ /\ /\ /\
f“;e"me‘ti,‘ate r01 |lr12 |[r23 |[r34 |[ras5 |[r56 |[r67 |[r78
miormaton s 6 |Is 4 ||s 16 ||s 10 ||s 16 ||s 14 ||s 2 ||s 8
f f f f f f f f
input 6 4 16 10 16 14 2 8
output

2/24/2025

The algorithm, part 2

2. Propagate ‘fromleft’ down:
— Root given a fromLeft of 0
— Node takes its fromLeft value and
 Passes its left child the same fromLeft

« Passes its right child its fromLeft plus its left child’s sum
(as stored in part 1)

— At the leaf for array position i,
output[i]=fromLeft+input[i]

This is an easy fork-join computation: traverse the tree built in step 1
and produce no result (the leaves assign to output)

— Invariant: fromLeft is sum of elements left of the node’s range

Analysis of first step: O(n) work, O(1og n) span
Analysis of second step:

Total for algorithm:
2/24/2025 10

The algorithm, part 2

2. Propagate ‘fromleft’ down:
— Root given a fromLeft of 0
— Node takes its fromLeft value and
 Passes its left child the same fromLeft

« Passes its right child its fromLeft plus its left child’s sum
(as stored in part 1)

— At the leaf for array position i,
output[i]=fromLeft+input[i]

This is an easy fork-join computation: traverse the tree built in step 1
and produce no result (the leaves assign to output)

— Invariant: fromLeft is sum of elements left of the node’s range

Analysis of first step: O(n) work, O(1og n) span
Analysis of second step: O(n) work, O(log n) span

Total for algorithm: O(n) work, O(1og n) span
2/24/2025 11

Second pass

Using ‘sum’, get the

sum of everything to
the left of this range
(call it ‘fromleft’);

propagate down from /

root

input

output

2/24/2025

range 0,8
sum 76
/ fromleft 0O \
range 04 range 4,8
sum 36 sum 40
fromleft 0 fromleft 36
range 0,2 range 24 range 4,6 range 6,8
sum 10 sum 26 sum 30 sum 10
fromleft O fromleft 10 fromleft 36 fromleft 66
r 0,1 r 1,2 r 2,3 r 3,4 r 4,5 r 5,6 r 6,7 r 7.8
6 S 4 S 16 ||S 10 ||S 16 ||[S 14 ||s 2 s 8
f 0 f 6 f 10 ||[f 26 ||[f 36 ||[f 52 ||[f 66 ||[f 68
6 4 16 10 16 14 2 8
6 10 26 36 52 66 68 76

12

Sequential cut-off

Adding a sequential cut-off isn’t too bad:

« Step One: Propagating Up the sums:

— Have a leaf node just hold the sum of a range of values
instead of just one array value (Sequentially compute sum
for that range)

— The tree itself will be shallower

« Step Two: Propagating Down the fromLefts:

— Have leaf compute prefix sum sequentially over its [lo,hi):
output[lo] = fromlLeft + input[lo];
for (i=lo+l; i < hi; i++)
output[i] = output[i-1] + input[i]

2/24/2025

Parallel prefix, generalized

Just as sum-array was the simplest example of a common pattern,
prefix-sum illustrates a pattern that arises in many, many problems

 Minimum, maximum of all elements to the left of i1
* |s there an element to the left of i satisfying some property?
* Count of elements to the left of i satisfying some property

— This last one is perfect for an efficient parallel pack...
— Perfect for building on top of the “parallel prefix trick”

2/24/2025 14

Pack (think “Filter’)

[Non-standard terminology]

Given an array input, produce an array output containing only
elements such that £ (element) IS true

Example: input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]
f: “is element > 10”

output [17, 11, 13, 19, 24]

Parallelizable?
— Determining whether an element belongs in the output is easy

— But determining where an element belongs in the output is
hard; seems to depend on previous results....

2/24/2025 15

In this example,

Parallel Pack = (Soln) e 1
parallel map + parallel prefix + parallel map

1. Parallel map to compute a bit-vector for true elements:
input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]
bits [L, o, 0, 0, 1, 0, 1, 1, 0, 1]

2. Parallel-prefix sum on the bit-vector:
bitsum [1, 1, 1, 1, 2, 2, 3, 4, 4, 5]

3. Parallel map to produce the output:
output [17, 11, 13, 19, 24]

output = new array of size bitsum[n-1]
FORALL (1i=0; i < input.length; i++) {

2/24/2025 16

Pack comments

First two steps can be combined into one pass
— Just using a different base case for the prefix sum
— No effect on asymptotic complexity

Can also combine third step into the down pass of the prefix sum
— Again no effect on asymptotic complexity

Analysis: O(n) work, O(1og n) span
— 2 or 3 passes, but 3 is a constant ©

Parallelized packs will help us parallelize quicksort. (see reading)

2/24/2025 18

	CSE 332: Data Structures & Parallelism��Lecture 19: Parallel Prefix & Pack
	Outline
	The prefix-sum problem
	Parallel prefix-sum
	Local bragging
	Parallel Prefix: The Up Pass
	The algorithm, part 1
	Slide Number 8
	First pass
	The algorithm, part 2
	The algorithm, part 2
	Second pass
	Sequential cut-off
	Parallel prefix, generalized
	Pack (think “Filter”)
	Parallel Pack = (Soln)�parallel map + parallel prefix + parallel map
	Pack comments

