
CSE 332: Data Structures & Parallelism

Lecture 15: Graph Traversals

Ruth Anderson
Winter 2025

Graph Traversals

Next problem: For an arbitrary graph and a starting node v, find all
nodes reachable (i.e., there exists a path) from v
– Possibly “do something” for each node (an iterator!)

• E.g. Print to output, set some field, etc.
Related Questions:
• Is an undirected graph connected?
• Is a directed graph weakly / strongly connected?

– For strongly, need a cycle back to starting node

Basic idea:
– Keep following nodes
– But “mark” nodes after visiting them, so the traversal terminates

and processes each reachable node exactly once

2/12/2025 2

Graph Traversal: Abstract Idea

traverseGraph(Node start) {
Set pending = emptySet();
pending.add(start)
mark start as "visited"
while(pending is not empty) {
next = pending.remove()
for each node u adjacent to next

if(u is not marked) {
mark u
pending.add(u)

}
}

}

2/12/2025 3

Running time and options

• Assuming add and remove are O(1), entire traversal is O(|E|)
• Use an adjacency list representation

• The order we traverse depends entirely on how add and remove
work/are implemented
– Depth-first graph search (DFS): a stack
– Breadth-first graph search (BFS): a queue

• DFS and BFS are “big ideas” in computer science
– Depth: recursively explore one part before going back to the

other parts not yet explored
– Breadth: Explore areas closer to the start node first

2/12/2025 4

Recursive DFS, Example : trees
• A tree is a graph and DFS and BFS are particularly easy to “see”

2/12/2025

A

B

D E

C

F

HG

DFS(Node start) {
mark and “process”(e.g. print) start
for each node u adjacent to start
if u is not marked
DFS(u)

}

Order processed: A, B, D, E, C, F, G, H
• Exactly what we called a “pre-order traversal” for trees
• The marking is not needed here, but we need it to support arbitrary

graphs , we need a way to process each node exactly once
5

DFS with a stack, Example: trees

2/12/2025

A

B

D E

C

F

HG

DFS2(Node start) {
initialize stack s to hold start
mark start as "visited"
while(s is not empty) {
next = s.pop() // and “process”
for each node u adjacent to next
if(u is not marked)
mark u and push onto s

}
}

Order processed:
• A different but perfectly fine traversal

6

BFS with a queue, Example: trees

2/12/2025

A

B

D E

C

F

HG

BFS(Node start) {
initialize queue q to hold start
mark start as "visited"
while(q is not empty) {
next = q.dequeue()// and “process”
for each node u adjacent to next
if(u is not marked)
mark u and enqueue onto q

}
}

Order processed:
• A “level-order” traversal

8

DFS/BFS Comparison
Breadth-first search:
• Always finds shortest paths, i.e., “optimal solutions

– Better for “what is the shortest path from x to y”
• Queue may hold O(|V|) nodes (e.g. at the bottom level of binary tree

of height h, 2h nodes in queue)

Depth-first search:
• Can use less space in finding a path

– If longest path in the graph is p and highest out-degree is d then
DFS stack never has more than d*p elements

A third approach: Iterative deepening (IDDFS):
– Try DFS but don’t allow recursion more than K levels deep.
– If that fails, increment K and start the entire search over

• Like BFS, finds shortest paths. Like DFS, less space.

2/12/2025 10

Saving the path

• Our graph traversals can answer the “reachability question”:
– “Is there a path from node x to node y?”

• Q: But what if we want to output the actual path?
– Like getting driving directions rather than just knowing it’s

possible to get there!

• A: Like this:
– Instead of just “marking” a node, store the previous node

along the path (when processing u causes us to add v to the
search, set v.pred field to be u)

– When you reach the goal, follow pred fields backwards to
where you started (and then reverse the answer)

– If just wanted path length, could put the integer distance at
each node instead

2/12/2025 11

Example using BFS

2/12/2025

Seattle

San Francisco
Dallas

Salt Lake City

What is a path from Seattle to Austin
– Remember marked nodes are not re-enqueued
– Note shortest paths may not be unique

Chicago

Austin

12

Example using BFS

2/12/2025

Seattle

San Francisco
Dallas

Salt Lake City

What is a path from Seattle to Austin
– Remember marked nodes are not re-enqueued
– Note shortest paths may not be unique

Chicago

Austin

1

1

1

2
3

0

13

	CSE 332: Data Structures & Parallelism��Lecture 15: Graph Traversals
	Graph Traversals
	Graph Traversal: Abstract Idea
	Running time and options
	Recursive DFS, Example : trees
	DFS with a stack, Example: trees
	BFS with a queue, Example: trees
	DFS/BFS Comparison
	Saving the path
	Example using BFS
	Example using BFS

