
CSE 332: Data Structures & Parallelism

Lecture 13: Beyond Comparison Sorting

Ruth Anderson
Winter 2025

Today

• Sorting
– Comparison sorting
– Beyond comparison sorting

2/05/2025 2

The Big Picture

2/05/2025 3

Simple
algorithms:

O(n2)

Fancier
algorithms:
O(n log n)

Comparison
lower bound:
Ω(n log n)

Specialized
algorithms:

O(n)

Handling
huge data

sets

Insertion sort
Selection sort
Shell sort
…

Heap sort
Merge sort
Quick sort (avg)
…

Bucket sort
Radix sort

External
sorting

How fast can we sort?

• Heapsort & mergesort have O(n log n) worst-case running time

• Quicksort has O(n log n) average-case running times

• These bounds are all tight, actually Θ(n log n)

• So maybe we need to dream up another algorithm with a lower
asymptotic complexity, such as O(n) or O(n log log n)
– Instead: prove that this is impossible

• Assuming our comparison model: The only operation an
algorithm can perform on data items is a 2-element
comparison

2/05/2025 4

A Different View of Sorting

• Assume we have n elements to sort
– And for simplicity, none are equal (no duplicates)

• How many permutations (possible orderings) of the elements?

• Example, n=3,

2/05/2025 5

A Different View of Sorting

• Assume we have n elements to sort
– And for simplicity, none are equal (no duplicates)

• How many permutations (possible orderings) of the elements?

• Example, n=3, six possibilities
a[0]<a[1]<a[2] a[0]<a[2]<a[1] a[1]<a[0]<a[2]
a[1]<a[2]<a[0] a[2]<a[0]<a[1] a[2]<a[1]<a[0]

• In general, n choices for least element, then n-1 for next, then
n-2 for next, …
– n(n-1)(n-2)…(2)(1) = n! possible orderings

2/05/2025 6

Describing every comparison sort

• A different way of thinking of sorting is that the sorting algorithm
has to “find” the right answer among the n! possible answers
– Starts “knowing nothing”, “anything is possible”
– Gains information with each comparison, eliminating some

possiblities
• Intuition: At best, each comparison can eliminate half of

the remaining possibilities
– In the end narrows down to a single possibility

2/05/2025 7

Counting Comparisons

• Don’t know what the algorithm is, but it cannot make progress
without doing comparisons
– Eventually does a first comparison “is a < b ?"
– Can use the result to decide what second comparison to

do (e.g. “is a < c ?” Or “is b < c ?”)
– Etc.: comparison k can be chosen based on first k-1 results

• What is the first comparison in:
– Selection Sort?
– Insertion Sort?
– Quicksort?
– Mergesort?

2/05/2025 8

Counting Comparisons

• Don’t know what the algorithm is, but it cannot make progress
without doing comparisons
– Eventually does a first comparison “is a < b ?"
– Can use the result to decide what second comparison to

do (e.g. “is a < c ?” Or “is b < c ?”)
– Etc.: comparison k can be chosen based on first k-1 results

• Can represent this process as a decision tree
– Nodes contain “set of remaining possibilities”
– At root, anything is possible; no option eliminated
– Edges are “answers from a comparison”
– The algorithm does not actually build the tree; it’s what our

proof uses to represent “the most the algorithm could know
so far” as the algorithm progresses

2/05/2025 9

One Decision Tree for n=3

a < b < c, b < c < a,
a < c < b, c < a < b,
b < a < c, c < b < a

a < b < c
a < c < b
c < a < b

b < a < c
b < c < a
c < b < a

a < b < c
a < c < b

c < a < b

a < b < c a < c < b

b < a < c
b < c < a

c < b < a

b < c < a b < a < c

a < b a > b

a > ca < c

b < c b > c

b < c b > c

c < a c > a

• The leaves contain all the possible orderings of a, b, c
• A different algorithm would lead to a different tree

2/05/2025 10

Example if a < c < b

a < b < c, b < c < a,
a < c < b, c < a < b,
b < a < c, c < b < a

a < b < c
a < c < b
c < a < b

b < a < c
b < c < a
c < b < a

a < b < c
a < c < b

c < a < b

a < b < c a < c < b

b < a < c
b < c < a

c < b < a

b < c < a b < a < c

a < b a > b

a > ca < c

b < c b > c

b < c b > c

c < a c > a

possible orders

actual order

2/05/2025 11

What the decision tree tells us
• A binary tree because each comparison has 2 outcomes

– Perform only comparisons between 2 elements; binary result
• Ex: Is a<b? Yes or no?

– We assume no duplicate elements
– Assume algorithm doesn’t ask redundant questions

• Because any data is possible, any algorithm needs to ask enough
questions to produce all n! answers
– Each answer is a different leaf
– So the tree must be big enough to have n! leaves
– Running any algorithm on any input will at best correspond to

a root-to-leaf path in some decision tree with n! leaves
– So no algorithm can have worst-case running time better than

the height of a tree with n! leaves
• Worst-case number-of-comparisons for an algorithm is an

input leading to a longest path in algorithm’s decision tree
2/05/2025 12

Where are we
Proven: No comparison sort can have worst-case running time better

than: the height of a binary tree with n! leaves
– Turns out average-case is same asymptotically
– A comparison sort could be worse than this height, but it cannot

be better
– Fine, how tall is a binary tree with n! leaves?

Now: Show that a binary tree with n! leaves has height Ω(n log n)
– That is, n log n is the lower bound, the height must be at least

this, could be more, (in other words your comparison sorting
algorithm could take longer than this, but it won’t be faster)

– Factorial function grows very quickly

Then we’ll conclude that: (Comparison) Sorting is Ω (n log n)
– This is an amazing computer-science result: proves all the

clever programming in the world can’t sort in linear time!
2/05/2025 13

Lower bound on Height

• A binary tree of height h has at most how many
leaves?
L ≤ ______________

• A binary tree with L leaves has height at least:
h ≥ ______________

• The decision tree has how many leaves: _______
• So the decision tree has height:

h ≥ ______________

2/05/2025 14

Lower bound on height

• The height of a binary tree with L leaves is at least log2 L
• So the height of our decision tree, h:

h ≥ log2 (n!) property of binary trees
= log2 (n*(n-1)*(n-2)…(2)(1)) definition of factorial
= log2 n + log2 (n-1) + … + log2 1 property of logarithms
≥ log2 n + log2 (n-1) + … + log2 (n/2) keep first n/2 terms
≥ (n/2) log2 (n/2) each of the n/2 terms left is ≥ log2 (n/2)
= (n/2)(log2 n - log2 2) property of logarithms
= (1/2)nlog2 n – (1/2)n arithmetic
“=“ Ω (n log n)

2/05/2025 16

The Big Picture

2/05/2025 17

Simple
algorithms:

O(n2)

Fancier
algorithms:
O(n log n)

Comparison
lower bound:
Ω(n log n)

Specialized
algorithms:

O(n)

Handling
huge data

sets

Insertion sort
Selection sort
Shell sort
…

Heap sort
Merge sort
Quick sort (avg)
…

Bucket sort
Radix sort

External
sorting

How???
• Change the model – assume

more than ‘compare(a,b)’

BucketSort (a.k.a. BinSort)
• If all values to be sorted are known to be integers between 1

and B (or any small range),
– Create an array of size B, and put each element in its proper

bucket (a.ka. bin)
– If data is only integers, no need to store more than a count of

how many times that bucket has been used
• Output result via linear pass through array of buckets

2/05/2025 18

count array

1
2
3
4
5

• Example:
B=5
Input: (5,1,3,4,3,2,1,1,5,4,5)
output:

Analyzing bucket sort

• Overall: O(n+B)
– Linear in n, but also linear in B
– Ω(n log n) lower bound does not apply because this is not a

comparison sort

• Good when range, B, is smaller (or not much larger) than n
– (We don’t spend time doing lots of comparisons of duplicates!)

• Bad when B is much larger than n
– Wasted space; wasted time during final linear O(B) pass

• For data in addition to integer keys, use list at each bucket

2/05/2025 20

Bucket Sort with Data
• Most real lists aren’t just #’s; we have data
• Each bucket is a list (say, linked list)
• To add to a bucket, place at end O(1) (keep pointer to last element)

count array

1

2

3

4

5

• Example: Movie ratings:
1=bad,… 5=excellent

• Input=
5: Casablanca
3: Harry Potter movies
1: Rocky V
5: Star Wars

Rocky V

Harry Potter

Casablanca Star Wars

Result: 1: Rocky V, 3: Harry Potter, 5: Casablanca, 5: Star Wars
This result is stable; Casablanca still before Star Wars

2/05/2025 21

Bucket sort illustrates
a more general trick:
How might you implement
a heap for a small range of
integer priorities in a
similar manner…

Radix sort

• Radix = “the base of a number system”
– Examples will use 10 because we are used to that
– In implementations use larger numbers

• For example, for ASCII strings, might use 128
• Idea:

– Bucket sort on one digit at a time
• Number of buckets = radix
• Starting with least significant digit, sort with Bucket Sort
• Keeping sort stable

– Do one pass per digit
• Invariant: After k passes, the last k digits are sorted

• Aside: Origins go back to the 1890 U.S. census

2/05/2025 22

Example

Radix = 10

Input: 478
537

9
721

3
38

143
67

2/05/2025 23

First pass:
1. bucket sort by ones digit
2. Iterate thru and collect into a list
• List is sorted by first digit

1

721

2 3

3
143

4 5 6 7

537
67

8

478
38

9

9

0

Order now:721
3

143
537
67

478
38
9

Example

2/05/2025 24

Second pass:
stable bucket sort by tens digit

If we chop off the 100’s place,
these #s are sorted

1

721

2 3

3
143

4 5 6 7

537
67

8

478
38

9

9

0

Order now: 3
9

721
537
38

143
67

478

Radix = 10

Order was: 721
3

143
537
67

478
38
9

1 2

721

3

537
38

4

143

5 6

67

7

478

8 90

3
9

Example

2/05/2025 25

Third pass:
stable bucket sort by 100s digit

Only 3 digits: We’re done!

Order now: 3
9

38
67

143
478
537
721

Radix = 10

1

143

2 3 4

478

5

537

6 7

721

8 90

3
9

38
67Order was: 3

9
721
537
38

143
67

478

1 2

721

3

537
38

4

143

5 6

67

7

478

8 90

3
9

2/05/2025

RadixSort
• Input:126, 328, 636, 341, 416, 131, 328

0 1 2 3 4 5 6 7 8 9

BucketSort on lsd:

0 1 2 3 4 5 6 7 8 9

BucketSort on next-higher digit:

0 1 2 3 4 5 6 7 8 9

BucketSort on msd:

Student Activity

26

Analysis of Radix Sort
Performance depends on:
• Input size: n
• Number of buckets = Radix: B

– e.g. Base 10 #: 10; binary #: 2; Alpha-numeric char: 62
• Number of passes = “Digits”: P

– e.g. Ages of people: 3; Phone #: 10; Person’s name: ?

• Work per pass is 1 bucket sort: ___________
– Each pass is a Bucket Sort

• Total work is _____________
– We do ‘P’ passes, each of which is a Bucket Sort

2/05/2025 27

Comparison to Comparison Sorts

Compared to comparison sorts, sometimes a win, but often not
– Example: Strings of English letters up to length 15

• Approximate run-time: 15*(52 + n)
• This is less than n log n only if n > 33,000
• Of course, cross-over point depends on constant factors

of the implementations plus P and B
– And radix sort can have poor locality properties

– Not really practical for many classes of keys
• Strings: Lots of buckets

2/05/2025 29

Recap: Features of Sorting Algorithms

In-place
– Sorted items occupy the same space as the original items.

(No copying required, only O(1) extra space if any.)

Stable
– Items in input with the same value end up in the same order

as when they began.

Examples:
• Merge Sort - not in place, stable
• Quick Sort - in place, not stable

2/05/2025 30

Sorting massive data: External Sorting

Need sorting algorithms that minimize disk/tape access time:
• Quicksort and Heapsort both jump all over the array, leading to

expensive random disk accesses
• Mergesort scans linearly through arrays, leading to (relatively)

efficient sequential disk access

Basic Idea:
• Load chunk of data into Memory, sort, store this “run” on disk/tape
• Use the Merge routine from Mergesort to merge runs
• Repeat until you have only one run (one sorted chunk)

• Mergesort can leverage multiple disks
• Weiss gives some examples

31

Sorting Summary
• Simple O(n2) sorts can be fastest for small n

– selection sort, insertion sort (latter linear for mostly-sorted)
– good for “below a cut-off” to help divide-and-conquer sorts

• O(n log n) sorts
– heap sort, in-place but not stable nor parallelizable
– merge sort, not in place but stable and works as external sort
– quick sort, in place but not stable and O(n2) in worst-case

• often fastest, but depends on costs of comparisons/copies
• Ω (n log n) is worst-case and average lower-bound for sorting by

comparisons
• Non-comparison sorts

– Bucket sort good for small number of key values
– Radix sort uses fewer buckets and more phases

• Best way to sort? It depends!
2/05/2025 32

	CSE 332: Data Structures & Parallelism��Lecture 13: Beyond Comparison Sorting
	Today
	The Big Picture
	How fast can we sort?
	A Different View of Sorting
	A Different View of Sorting
	Describing every comparison sort
	Counting Comparisons
	Counting Comparisons
	One Decision Tree for n=3
	Example if a < c < b
	What the decision tree tells us
	Where are we
	Lower bound on Height
	Lower bound on height
	The Big Picture
	BucketSort (a.k.a. BinSort)
	Analyzing bucket sort
	Bucket Sort with Data
	Radix sort
	Example
	Example
	Example
	RadixSort
	Analysis of Radix Sort
	Comparison to Comparison Sorts
	Recap: Features of Sorting Algorithms
	Sorting massive data: External Sorting
	Sorting Summary

