
CSE 332: Data Structures & Parallelism

Lecture 12: Comparison Sorting

Ruth Anderson
Winter 2025

Today

• Sorting
– Comparison sorting

2/03/2025 2

Introduction to sorting

• Stacks, queues, priority queues, and dictionaries all focused on
providing one element at a time

• But often we know we want “all the data items” in some order
– Anyone can sort, but a computer can sort faster
– Very common to need data sorted somehow

• Alphabetical list of people
• Population list of countries
• Search engine results by relevance
• …

• Different algorithms have different asymptotic and constant-
factor trade-offs
– No single ‘best’ sort for all scenarios
– Knowing one way to sort just isn’t enough

2/03/2025 3

More reasons to sort

General technique in computing:
Preprocess (e.g. sort) data to make subsequent operations faster

Example: Sort the data so that you can
– Find the kth largest in constant time for any k
– Perform binary search to find an element in logarithmic time

Whether the benefit of the preprocessing depends on
– How often the data will change
– How much data there is

2/03/2025 4

The main problem, stated carefully
For now we will assume we have n comparable elements in an array

and we want to rearrange them to be in increasing order
Input:

– An array A of data records
– A key value in each data record
– A comparison function (consistent and total)

• Given keys a & b, what is their relative ordering? <, =, >?
• Ex: keys that implement Comparable or have a Comparator that can

handle them
Effect:

– Reorganize the elements of A such that for any i and j,
if i < j then A[i] ≤ A[j]

– Usually unspoken assumption: A must have all the same data it started with
– Could also sort in reverse order, of course

An algorithm doing this is a comparison sort

2/03/2025 5

Variations on the basic problem
1. Maybe elements are in a linked list (could convert to array and back in

linear time, but some algorithms needn’t do so)
2. Maybe in the case of ties we should preserve the original ordering

– Sorts that do this naturally are called stable sorts
– One way to sort twice, Ex: Sort movies by year, then for ties,

alphabetically
3. Maybe we must not use more than O(1) “auxiliary space”

– Sorts meeting this requirement are called ‘in-place’ sorts
– Not allowed to allocate extra array (at least not with size O(n)), but can

allocate O(1) # of variables
– All work done by swapping around in the array

4. Maybe we can do more with elements than just compare
– Comparison sorts assume we work using a binary ‘compare’ operator
– In special cases we can sometimes get faster algorithms

5. Maybe we have too much data to fit in memory
– Use an “external sorting” algorithm

2/03/2025 6

Sorting: The Big Picture

2/03/2025 7

Simple
algorithms:

O(n2)

Fancier
algorithms:
O(n log n)

Comparison
lower bound:
Ω(n log n)

Specialized
algorithms:

O(n)

Handling
huge data

sets

Insertion sort
Selection sort
Shell sort
…

Heap sort
Merge sort
Quick sort (avg)
…

Bucket sort
Radix sort

External
sorting

Insertion Sort
• Idea: At step k, put the kth element in the correct position among

the first k elements

• Alternate way of saying this:
– Sort first two elements (by swapping them if needed)
– Now compare 3rd element to 2nd (swap & keep swapping as

needed until no longer needs to move)
– Now compare 4th element to 3rd (swap & keep swapping as

needed until no longer needs to move)
– …

• “Loop invariant”: when loop index is i, first i elements are sorted
relative to each other

• Time?
Best-case _____ Worst-case _____ “Average” case ____

82/03/2025

Selection sort
• Idea: At step k, find the smallest element among the not-yet-

sorted elements and put it at position k

• Alternate way of saying this:
– Find smallest element, swap it into 1st location
– Find next smallest element, swap it into 2nd location
– Find next smallest element, swap it into 3rd location
– …

• “Loop invariant”: when loop index is i,
first i elements are the i smallest elements in sorted order

• Time?
Best-case _____ Worst-case _____ “Average” case ____

102/03/2025

Insertion Sort vs. Selection Sort

• Different algorithms

• Solve the same problem

• Have the same worst-case and average-case asymptotic
complexity
– Insertion-sort has better best-case complexity; preferable

when input is “mostly sorted”

• Other algorithms are more efficient for non-small arrays that are
not already almost sorted
– Insertion sort may do well on small arrays

122/03/2025

Aside: We won’t cover Bubble Sort

• It doesn’t have good asymptotic complexity: O(n2)

• It’s not particularly efficient with respect to common factors

• Basically, almost everything it is good at, some other algorithm
is at least as good at

• Some people seem to teach it just because someone taught it to
them

• For fun see: “Bubble Sort: An Archaeological Algorithmic Analysis”, Owen Astrachan, SIGCSE 2003
http://www.cs.duke.edu/~ola/bubble/bubble.pdf

2/03/2025 13

Sorting: The Big Picture

2/03/2025 14

Simple
algorithms:

O(n2)

Fancier
algorithms:
O(n log n)

Comparison
lower bound:
Ω(n log n)

Specialized
algorithms:

O(n)

Handling
huge data

sets

Insertion sort
Selection sort
Shell sort
…

Heap sort
Merge sort
Quick sort (avg)
…

Bucket sort
Radix sort

External
sorting

Heap sort

• Sorting with a heap is easy:
– insert each arr[i], better yet use buildHeap
– for(i=0; i < arr.length; i++)

arr[i] = deleteMin();

• Worst-case running time:

• We have the array-to-sort and the heap
– So this is not an in-place sort
– There’s a trick to make it in-place…

2/03/2025 15

In-place heap sort

– Treat the initial array as a heap (via buildHeap)
– When you delete the ith element, put it at arr[n-i]

• It’s not part of the heap anymore!

2/03/2025 17

4 7 5 9 8 6 10 3 2 1

sorted partheap part

arr[n-i]=
deleteMin()

5 7 6 9 8 10 4 3 2 1

sorted partheap part

But this reverse sorts –
how would you fix that?

“AVL sort”

• How?

2/03/2025 18

Divide and conquer

Very important technique in algorithm design

1. Divide problem into smaller parts

2. Solve the parts independently
– Think recursion
– Or potential parallelism

3. Combine solution of parts to produce overall solution

Ex: Sort each half of the array, combine together; to sort each half,
split into halves…

2/03/2025 20

Divide-and-conquer sorting

Two great sorting methods are fundamentally divide-and-conquer

1. Mergesort: Sort the left half of the elements (recursively)
Sort the right half of the elements (recursively)
Merge the two sorted halves into a sorted whole

2. Quicksort: Pick a “pivot” element
Divide elements into those less-than pivot

and those greater-than pivot
Sort the two divisions (recursively on each)
Answer is [sorted-less-than then pivot then

sorted-greater-than]

2/03/2025 21

Mergesort

• To sort array from position lo to position hi:
– If range is 1 element long, it’s sorted! (Base case)
– Else, split into two halves:

• Sort from lo to (hi+lo)/2
• Sort from (hi+lo)/2 to hi
• Merge the two halves together

• Merging takes two sorted parts and sorts everything
– O(n) but requires auxiliary space…

2/03/2025 22

8 2 9 4 5 3 1 6a

hi

0 1 2 3 4 5 6 7

lo

Example, focus on merging

Start with:

2/03/2025 23

8 2 9 4 5 3 1 6

After we return from
left and right recursive calls
(pretend it works for now)

2 4 8 9 1 3 5 6

Merge:
Use 3 “fingers”
and 1 more array

(After merge,
copy back to
original array)

aux

a

a

Example, focus on merging

Start with:

2/03/2025 24

8 2 9 4 5 3 1 6

After recursion:
(not magic)

2 4 8 9 1 3 5 6

Merge:
Use 3 “fingers”
and 1 more array

1

(After merge,
copy back to
original array)

Example, focus on merging

Start with:

2/03/2025 25

8 2 9 4 5 3 1 6

After recursion:
(not magic)

2 4 8 9 1 3 5 6

Merge:
Use 3 “fingers”
and 1 more array

1 2

(After merge,
copy back to
original array)

Example, focus on merging

Start with:

2/03/2025 26

8 2 9 4 5 3 1 6

After recursion:
(not magic)

2 4 8 9 1 3 5 6

Merge:
Use 3 “fingers”
and 1 more array

1 2 3

(After merge,
copy back to
original array)

Example, focus on merging

Start with:

2/03/2025 27

8 2 9 4 5 3 1 6

After recursion:
(not magic)

2 4 8 9 1 3 5 6

Merge:
Use 3 “fingers”
and 1 more array

1 2 3 4

(After merge,
copy back to
original array)

Example, focus on merging

Start with:

2/03/2025 28

8 2 9 4 5 3 1 6

After recursion:
(not magic)

2 4 8 9 1 3 5 6

Merge:
Use 3 “fingers”
and 1 more array

1 2 3 4 5

(After merge,
copy back to
original array)

Example, focus on merging

Start with:

2/03/2025 29

8 2 9 4 5 3 1 6

After recursion:
(not magic)

2 4 8 9 1 3 5 6

Merge:
Use 3 “fingers”
and 1 more array

1 2 3 4 5 6

(After merge,
copy back to
original array)

Example, focus on merging

Start with:

2/03/2025 30

8 2 9 4 5 3 1 6

After recursion:
(not magic)

2 4 8 9 1 3 5 6

Merge:
Use 3 “fingers”
and 1 more array

1 2 3 4 5 6 8

(After merge,
copy back to
original array)

Example, focus on merging

Start with:

2/03/2025 31

8 2 9 4 5 3 1 6

After recursion:
(not magic)

2 4 8 9 1 3 5 6

Merge:
Use 3 “fingers”
and 1 more array

1 2 3 4 5 6 8 9

(After merge,
copy back to
original array)

Example, focus on merging

Start with:

2/03/2025 32

8 2 9 4 5 3 1 6

After recursion:
(not magic)

2 4 8 9 1 3 5 6

Merge:
Use 3 “fingers”
and 1 more array

1 2 3 4 5 6 8 9

(After merge,
copy back to
original array)

1 2 3 4 5 6 8 9

Mergesort example: Recursively splitting
list in half

8 2 9 4 5 3 1 6

8 2 1 69 4 5 3

8 2

Divide

Divide

Divide
1 element

8 2 9 4 5 3 1 6

9 4 5 3 1 6

2/03/2025 33

Mergesort example: Merge as we return
from recursive calls

8 2 9 4 5 3 1 6

8 2 1 69 4 5 3

8 2

2 8

2 4 8 9

1 2 3 4 5 6 8 9

Merge

Merge

Merge

Divide

Divide

Divide
1 element

8 2 9 4 5 3 1 6

9 4 5 3 1 6

4 9 3 5 1 6

1 3 5 6

When a recursive call ends, it’s sub-arrays are each in order; just
need to merge them in order together2/03/2025 34

Mergesort example: Merge as we return
from recursive calls

8 2 9 4 5 3 1 6

8 2 1 69 4 5 3

8 2

2 8

2 4 8 9

1 2 3 4 5 6 8 9

Merge

Merge

Merge

Divide

Divide

Divide
1 element

8 2 9 4 5 3 1 6

9 4 5 3 1 6

4 9 3 5 1 6

1 3 5 6

We need another array in which to do each merging step; merge
results into there, then copy back to original array2/03/2025 35

Mergesort, some details: saving a little time

• What if the final steps of our merging looked like the following:

• Seems kind of wasteful to copy 8 & 9 to the auxiliary array just
to copy them immediately back…

2 4 5 6 1 3 8 9

1 2 3 4 5 6

Main array

Auxiliary array

2/03/2025 36

Mergesort, some details: saving a little time
• Unnecessary to copy ‘dregs’ over to auxiliary array

– If left-side finishes first, just stop the merge & copy the
auxiliary array:

– If right-side finishes first, copy dregs directly into right side,
then copy auxiliary array

copy

first

second

2/03/2025 37

Some details: saving space / copying

Simplest / worst approach:
Use a new auxiliary array of size (hi-lo) for every merge
Returning from a recursive call? Allocate a new array!

Better:
Reuse same auxiliary array of size n for every merging stage
Allocate auxiliary array at beginning, use throughout

Best (but a little tricky):
Don’t copy back – at 2nd, 4th, 6th, … merging stages, use the
original array as the auxiliary array and vice-versa
– Need one copy at end if number of stages is odd

2/03/2025 38

Picture of the “best” from previous slide:
Allocate one auxiliary array, switch each step

First recurse down to lists of size 1
As we return from the recursion, switch off arrays

Arguably easier to code up without recursion at all

Merge by 1

Merge by 2

Merge by 4

Merge by 8

Merge by 16

Copy if Needed

2/03/2025 39

Aside: Linked lists and big data

We defined the sorting problem as over an array, but sometimes
you want to sort linked lists

One approach:
– Convert to array: O(n)
– Sort: O(n log n)
– Convert back to list: O(n)

Or: mergesort works very nicely on linked lists directly
– heapsort and quicksort do not
– insertion sort and selection sort do but they’re slower

Mergesort is also the sort of choice for external sorting
– Linear merges minimize disk accesses

2/03/2025 40

Mergesort Analysis

Having defined an algorithm and argued it is correct, we should
analyze its running time (and space):

To sort n elements, we:
– Return immediately if n=1
– Else do 2 subproblems of size n/2 and then an O(n) merge

Recurrence relation?

2/03/2025 41

Mergesort Analysis

Having defined an algorithm and argued it is correct, we should
analyze its running time (and space):

To sort n elements, we:
– Return immediately if n=1
– Else do 2 subproblems of size n/2 and then an O(n) merge

Recurrence relation:
T(1) = c1

T(n) = 2T(n/2) + c2n + c3

2/03/2025 42

Or more intuitively…
This recurrence comes up often enough you should just “know” it’s

O(n log n)

Merge sort is relatively easy to intuit (best, worst, and average):
• The recursion “tree” will have log n height
• At each level we do a total amount of merging equal to n

2/03/2025 44

Quicksort
• Also uses divide-and-conquer

– Recursively chop into halves
– But, instead of doing all the work as we merge together, we’ll

do all the work as we recursively split into halves
– Also unlike MergeSort, does not need auxiliary space

• O(n log n) on average , but O(n2) worst-case
– MergeSort is always O(nlogn)
– So why use QuickSort?

• Can be faster than mergesort
– Often believed to be faster
– Quicksort does fewer copies and more comparisons, so it

depends on the relative cost of these two operations!

2/03/2025 45

Quicksort Overview

1. Pick a pivot element
– Hopefully an element ~median
– Good QuickSort performance depends on good choice of pivot; we’ll see

why later, and talk about good pivot selection later

2. Partition all the data into:
A. The elements less than the pivot
B. The pivot
C. The elements greater than the pivot

3. Recursively sort A and C
4. The answer is, “as simple as A, B, C”

(Alas, there are some details lurking in this algorithm)

2/03/2025 46

Quicksort: Think in terms of sets

2/03/2025 47

13
81

92
43

65

31 57

26

75
0

S select pivot value

13 8192
43 65

31

5726

750S1 S2 partition S

13 4331 57260

S1
81 927565

S2
QuickSort(S1) and

QuickSort(S2)

13 4331 57260 65 81 9275S Presto! S is sorted

[Weiss]

Quicksort Example, showing recursion

2/03/2025 48

2 4 3 1 8 9 6

2 1 94 6

2

1 2

1 2 3 4

1 2 3 4 5 6 8 9

Conquer

Conquer

Conquer

Divide

Divide

Divide
1 element

8 2 9 4 5 3 1 6

5

83

1

6 8 9

2 4 3 1 8 9 6

2 1 94 6

2

1 2

1 2 3 4

1 2 3 4 5 6 8 9

Conquer

Conquer

Conquer

Divide

Divide

Divide
1 element

8 2 9 4 5 3 1 6

5

83

1

6 8 9

MergeSort
Recursion Tree

QuickSort
Recursion Tree

2/03/2025 49

Quicksort Details

We have not yet explained:

• How to pick the pivot element
– Any choice is correct: data will end up sorted
– But as analysis will show, want the two partitions to be about

equal in size

• How to implement partitioning
– In linear time
– In place

2/03/2025 50

Pivots

• Best pivot?
– Median
– Halve each time

• Worst pivot?
– Greatest/least element
– Reduce to problem of size 1 smaller
– O(n2)

2 4 3 1 8 9 6

2 1 94 6

2

1 2

1 2 3 4

1 2 3 4 5 6 8 9

Conquer

Conquer

Conquer

Divide

Divide

Divide
1 element

8 2 9 4 5 3 1 6

5

83

1

6 8 9

2/03/2025 51

Quicksort: Potential pivot rules
While sorting arr from lo (inclusive) to hi (exclusive)…

• Pick arr[lo] or arr[hi-1]
– Fast, but worst-case is (mostly) sorted input

• Pick random element in the range
– Does as well as any technique, but (pseudo)random number

generation can be slow
– (Still probably the most elegant approach)

• Median of 3, e.g., arr[lo], arr[hi-1], arr[(hi+lo)/2]
– Common heuristic that tends to work well

2/03/2025 52

arr

lo hi-1

void quicksort(int[] arr, int lo, int hi)

Partitioning

• That is, given 8, 4, 2, 9, 3, 5, 7 and pivot 5
– Dividing into left half & right half (based on pivot)

• Conceptually simple, but hardest part to code up correctly
– After picking pivot, need to partition

• Ideally in linear time
• Ideally in place

• Ideas?

2/03/2025 53

Partitioning
• One approach (there are slightly fancier ones):

1. Swap pivot with arr[lo]; move it ‘out of the way’
2. Use two fingers i and j, starting at lo+1 and hi-1 (start &

end of range, apart from pivot)
3. Move from right until we hit something less than the pivot;

belongs on left side
Move from left until we hit something greater than the pivot;
belongs on right side
Swap these two; keep moving inward
while (i < j)

if (arr[j] > pivot) j--
else if (arr[i] <= pivot) i++
else swap arr[i] with arr[j]

4. Put pivot back in middle (Swap with arr[i])

2/03/2025 54

Quicksort Example

• Step one: pick pivot as median of 3
– lo = 0, hi = 10

2/03/2025 55

6 1 4 9 0 3 5 2 7 8
0 1 2 3 4 5 6 7 8 9

• Step two: move pivot to the lo position

8 1 4 9 0 3 5 2 7 6
0 1 2 3 4 5 6 7 8 9

Quicksort Example

Now partition in place

Move fingers

Swap

Move fingers

Move pivot

2/03/2025 56

6 1 4 9 0 3 5 2 7 8

6 1 4 9 0 3 5 2 7 8

6 1 4 2 0 3 5 9 7 8

6 1 4 2 0 3 5 9 7 8

Often have more than
one swap during partition –
this is a short example

5 1 4 2 0 3 6 9 7 8

Quicksort Analysis

• Best-case?

• Worst-case?

• Average-case?

2/03/2025 57

Quicksort Cutoffs

• For small n, all that recursion tends to cost more than doing a
quadratic sort
– Remember asymptotic complexity is for large n
– Also, recursive calls add a lot of overhead for small n

• Common engineering technique: switch to a different algorithm
for subproblems below a cutoff
– Reasonable rule of thumb: use insertion sort for n < 10

• Notes:
– Could also use a cutoff for merge sort
– Cutoffs are also the norm with parallel algorithms

• switch to sequential algorithm
– None of this affects asymptotic complexity

2/03/2025 61

Quicksort Cutoff skeleton

2/03/2025 62

void quicksort(int[] arr, int lo, int hi) {
if(hi – lo < CUTOFF)

insertionSort(arr,lo,hi);
else

…
}

Notice how this cuts out the vast majority of the recursive calls
– Think of the recursive calls to quicksort as a tree
– Trims out the bottom layers of the tree

	CSE 332: Data Structures & Parallelism��Lecture 12: Comparison Sorting
	Today
	Introduction to sorting
	More reasons to sort
	The main problem, stated carefully
	Variations on the basic problem
	Sorting: The Big Picture
	Insertion Sort
	Selection sort
	Insertion Sort vs. Selection Sort
	Aside: We won’t cover Bubble Sort
	Sorting: The Big Picture
	Heap sort
	In-place heap sort
	“AVL sort”
	Divide and conquer
	Divide-and-conquer sorting
	Mergesort
	Example, focus on merging
	Example, focus on merging
	Example, focus on merging
	Example, focus on merging
	Example, focus on merging
	Example, focus on merging
	Example, focus on merging
	Example, focus on merging
	Example, focus on merging
	Example, focus on merging
	Mergesort example: Recursively splitting list in half
	Mergesort example: Merge as we return from recursive calls
	Mergesort example: Merge as we return from recursive calls
	Mergesort, some details: saving a little time
	Mergesort, some details: saving a little time
	Some details: saving space / copying
	Picture of the “best” from previous slide: �Allocate one auxiliary array, switch each step
	Aside: Linked lists and big data
	Mergesort Analysis
	Mergesort Analysis
	Or more intuitively…
	Quicksort
	Quicksort Overview
	Quicksort: Think in terms of sets
	Quicksort Example, showing recursion
	Slide Number 49
	Quicksort Details
	Pivots
	Quicksort: Potential pivot rules
	Partitioning
	Partitioning
	Quicksort Example
	Quicksort Example
	Quicksort Analysis
	Quicksort Cutoffs
	Quicksort Cutoff skeleton

