
CSE 332: Data Structures & Parallelism

Lecture 11:More Hashing

Ruth Anderson
Winter 2025

Today

• Dictionaries
– Hashing

1/31/2025 2

Hash Tables: Review

• Aim for constant-time (i.e., O(1)) find, insert, and delete
– “On average” under some reasonable assumptions

• A hash table is an array of some fixed size
– But growable as we’ll see

1/31/2025 3

E int table-index
collision? collision

resolution

client hash table library

0

…

TableSize –1

hash table

Hashing Choices

1. Choose a Hash function
2. Choose TableSize
3. Choose a Collision Resolution Strategy from these:

– Separate Chaining
– Open Addressing

• Linear Probing
• Quadratic Probing
• Double Hashing

• Other issues to consider:
– Deletion?
– What to do when the hash table gets “too full”?

1/31/2025 4

Open Addressing: Linear Probing

• Why not use up the empty space in the table?
• Store directly in the array cell (no linked list)
• How to deal with collisions?
• If h(key) is already full,

– try (h(key) + 1) % TableSize. If full,
– try (h(key) + 2) % TableSize. If full,
– try (h(key) + 3) % TableSize. If full…

• Example: insert 38, 19, 8, 109, 10

1/31/2025 5

0
1
2
3
4
5
6
7
8 38
9

Open addressing
Linear probing is one example of open addressing

In general, open addressing means resolving collisions by trying a
sequence of other positions in the table.

Trying the next spot is called probing
– We just did linear probing:

• ith probe: (h(key) + i) % TableSize
– In general have some probe function f and :

• ith probe: (h(key) + f(i)) % TableSize

Open addressing does poorly with high load factor λ
– So want larger tables
– Too many probes means no more O(1)

1/31/2025 10

Terminology

We and the book use the terms
– “chaining” or “separate chaining”
– “open addressing”

Very confusingly,
– “open hashing” is a synonym for “chaining”
– “closed hashing” is a synonym for “open addressing”

1/31/2025 11

Questions: Open Addressing: Linear Probing

How should find work? If value is in table? If not there?

Worst case scenario for find?

How should we implement delete?

How does open addressing with linear probing compare to
separate chaining?

1/31/2025 12

Open Addressing: Other Operations

insert finds an open table position using a probe function

What about find?
– Must use same probe function to “retrace the trail” for the data
– Unsuccessful search when reach empty position

What about delete?
– Must use “lazy” deletion. Why?

• Marker indicates “no data here, but don’t stop probing”

• As with lazy deletion on other data structures, on insert,
spots marked “deleted” can be filled in.

– Note: delete with chaining is just calling delete on the bucket
(e.g. linked list)1/31/2025 13

Primary Clustering

It turns out linear probing is a bad idea, even though the probe
function is quick to compute (a good thing)

1/31/2025 14

[R. Sedgewick]

• Tends to produce
clusters, which lead
to long probe
sequences

• Called primary
clustering

• Saw the start of a
cluster in our linear
probing example

Analysis of Linear Probing

• Trivial fact: For any λ < 1, linear probing will find an empty slot
– It is “safe” in this sense: no infinite loop unless table is full

• Non-trivial facts we won’t prove:
Average # of probes given λ (in the limit as TableSize→∞)
– Unsuccessful search:

– Successful search:

• This is pretty bad: need to leave sufficient empty space in the
table to get decent performance (see chart)

1/31/2025 15

() 







−

+ 21
11

2
1

λ

()






−

+
λ1

11
2
1

Analysis in chart form

• Linear-probing performance degrades rapidly as table gets full
– (Formula assumes “large table” but point remains)

• By comparison, separate chaining performance is linear in λ and
has no trouble with λ>1

1/31/2025 16

Open Addressing: Linear probing

(h(key) + f(i)) % TableSize

– For linear probing:
f(i) = i

– So probe sequence is:
• 0th probe: h(key) % TableSize
• 1st probe: (h(key) + 1) % TableSize
• 2nd probe: (h(key) + 2) % TableSize
• 3rd probe: (h(key) + 3) % TableSize
• …
• ith probe: (h(key) + i) % TableSize

1/31/2025 17

Open Addressing: Quadratic probing
• We can avoid primary clustering by changing the probe function…

(h(key) + f(i)) % TableSize

– For quadratic probing:
f(i) = i2

– So probe sequence is:
• 0th probe: h(key) % TableSize
• 1st probe: (h(key) + 1) % TableSize
• 2nd probe: (h(key) + 4) % TableSize
• 3rd probe: (h(key) + 9) % TableSize
• …
• ith probe: (h(key) + i2) % TableSize

• Intuition: Probes quickly “leave the neighborhood”

1/31/2025 18

Quadratic Probing Example

1/31/2025 19

0
1
2
3
4
5
6
7
8
9

TableSize=10
Insert:
89
18
49
58
79

ith probe: (h(key) + i2) % TableSize

Another Quadratic Probing Example

1/31/2025 26

TableSize = 7

Insert:
76 (76 % 7 = 6)
40 (40 % 7 = 5)
48 (48 % 7 = 6)
5 (5 % 7 = 5)
55 (55 % 7 = 6)
47 (47 % 7 = 5)

0
1
2
3
4
5
6

ith probe: (h(key) + i2) % TableSize

From bad news to good news
Bad News:
• After TableSize quadratic probes, we cycle through the same

indices
Good News:
• If TableSize is prime and λ < ½, then quadratic probing will find an

empty slot in at most TableSize/2 probes
• So: If you keep λ < ½ and TableSize is prime, no need to detect

cycles
• Proof posted in lecture11.txt (slightly less detailed proof in textbook)

For prime TableSize and 0 ≤ i,j ≤ TableSize/2 where i ≠ j,
(h(key) + i2) % TableSize ≠ (h(key) + j2) % TableSize

That is, if TableSize is prime, the first TableSize/2 quadratic probes
map to different locations (and one of those will be empty if the table
is < half full).

1/31/2025 34

1/31/2025 35

Quadratic Probing:
Success guarantee for λ < ½

• If size is prime and λ < ½, then quadratic probing will find
an empty slot in size/2 probes or fewer.
– show for all 0 ≤ i,j ≤ size/2 and i ≠ j

(h(x) + i2) mod size ≠ (h(x) + j2) mod size

– by contradiction: suppose that for some i ≠ j:
(h(x) + i2) mod size = (h(x) + j2) mod size
⇒ i2 mod size = j2 mod size
⇒ (i2 - j2) mod size = 0
⇒ [(i + j)(i - j)] mod size = 0

BUT size does not divide (i - j) or (i + j)

How can i + j = 0 or i + j = size when:
i ≠ j and 0 ≤ i,j ≤ size/2?

Similarly how can i - j = 0 or i - j = size ?

First size/2 probes distinct.
If < half full, one is empty.

(ith probe and jth probe
map to distinct locations)

Clustering reconsidered

• Quadratic probing does not suffer from primary clustering:
As we resolve collisions we are not merely growing “big blobs” by
adding one more item to the end of a cluster, we are looking i2

locations away, for the next possible spot.

• But quadratic probing does not help resolve collisions between
keys that initially hash to the same index
– Any 2 keys that initially hash to the same index will have the

same series of moves after that looking for any empty spot
– Called secondary clustering

• Can avoid secondary clustering with a probe function that
depends on the key: double hashing…

1/31/2025 36

Open Addressing: Double hashing
Idea: Given two good hash functions h and g, and two different keys k1

and k2, it is very unlikely that: h(k1)==h(k2) and g(k1)==g(k2)
(h(key) + f(i)) % TableSize

– For double hashing:
f(i) = i*g(key)

– So probe sequence is:
• 0th probe: h(key) % TableSize
• 1st probe: (h(key) + g(key)) % TableSize
• 2nd probe: (h(key) + 2*g(key)) % TableSize
• 3rd probe: (h(key) + 3*g(key)) % TableSize
• …
• ith probe: (h(key) + i*g(key)) % TableSize

• Detail: Make sure g(key) can’t be 0

1/31/2025 37

1/31/2025 38

Open Addressing: Double Hashing
0
1
2
3
4
5
6
7
8
9

Insert these values into the hash table
in this order. Resolve any collisions
with double hashing:
13
28
33
147
43

T = 10 (TableSize)
Hash Functions:

h(key) = key mod T
g(key) = 1 + ((key/T) mod (T-1))

ith probe:(h(key) + i*g(key)) % TableSize

Double-hashing analysis

Intuition: Since each probe is “jumping” by g(key) each time, we
“leave the neighborhood” and “go different places from other initial
collisions”

But, as in quadratic probing, we could still have a problem where
we are not "safe" due to an infinite loop despite room in table:
• No guarantee that i*g(key) will let us try all/most indices
• It is known that this cannot happen in at least one case:

For primes p and q such that 2 < q < p
h(key) = key % p
g(key) = q – (key % q)

1/31/2025 44

More double-hashing facts

• Assume “uniform hashing”
– Means probability of g(key1) % p == g(key2) % p is
1/p

• Non-trivial facts we won’t prove:
Average # of probes given λ (in the limit as TableSize→∞)
– Unsuccessful search (intuitive):

– Successful search (less intuitive):

• Bottom line: unsuccessful bad (but not as bad as linear probing),
but successful is not nearly as bad

1/31/2025 46

1
1 λ−

1 1log
1eλ λ
 
 − 

Where are we?
• Separate Chaining is easy

– find, insert, delete proportional to load factor on
average if using unsorted linked list nodes

– If using another data structure for buckets (e.g. AVL tree) ,
runtime is proportional to runtime for that structure.

• Open addressing uses probing, has clustering issues as table fills
Why use it:
– Less memory allocation?

• Some run-time overhead for allocating linked list (or
whatever) nodes; open addressing could be faster

– Easier data representation?
• Now:

– Growing the table when it gets too full (aka “rehashing”)
– Relation between hashing/comparing and connection to Java

1/31/2025 48

Rehashing

• As with array-based stacks/queues/lists, if table gets too full,
create a bigger table and copy everything over

• With separate chaining, we get to decide what “too full” means
– Keep load factor reasonable (e.g., < 1)?
– Consider average or max size of non-empty chains?

• For open addressing, half-full is a good rule of thumb

• New table size
– Twice-as-big is a good idea, except, uhm, that won’t be prime!
– So go about twice-as-big
– Can have a list of prime numbers in your code since you

probably won’t grow more than 20-30 times, and then
calculate after that

1/31/2025 49

More on rehashing

• What if we copy all data to the same indices in the new table?
– Will not work; we calculated the index based on TableSize

• Go through table, do standard insert for each into new table
– Iterate over old table: O(n)
– n inserts / calls to the hash function: n ⋅ O(1) = O(n)

• Is there some way to avoid all those hash function calls?
– Space/time tradeoff: Could store h(key) with each data item
– Growing the table is still O(n); saving h(key) only helps by a

constant factor

1/31/2025 50

Hashing and comparing

• Our use of int key can lead to us overlooking a critical detail:
– We initially hash E to get a table index
– While chaining or probing we need to determine if this is the E

that I am looking for. Just need equality testing.

• So a hash table needs a hash function and a equality testing
– In the Java library each object has an equals method and a
hashCode method

class Object {
boolean equals(Object o) {…}
int hashCode() {…}
…

}

1/31/2025 51

Equal objects must hash the same

• The Java library (and your hash tables) make a very important
assumption that clients must satisfy…

• Object-oriented way of saying it:
If a.equals(b), then we must require
a.hashCode()==b.hashCode()

• Function object way of saying it:
If c.compare(a,b) == 0, then we must require
h.hash(a) == h.hash(b)

• If you ever override equals
– You need to override hashCode also in a consistent way
– See CoreJava book, Chapter 5 for other "gotchas" with equals

1/31/2025 52

By the way: comparison has rules too

We have not emphasized important “rules” about comparison for:
– All our dictionaries
– Sorting (next major topic)

Comparison must impose a consistent, total ordering:

For all a, b, and c,
– If compare(a,b) < 0, then compare(b,a) > 0
– If compare(a,b) == 0, then compare(b,a) == 0
– If compare(a,b) < 0 and compare(b,c) < 0,

then compare(a,c) < 0

1/31/2025 53

A Generally Good hashCode()

int result = 17; // start at a prime

foreach field f
int fieldHashcode =

boolean: (f ? 1: 0)
byte, char, short, int: (int) f
long: (int) (f ^ (f >>> 32))
float: Float.floatToIntBits(f)
double: Double.doubleToLongBits(f), then above
Object: object.hashCode()

result = 31 * result + fieldHashcode;
return result;

1/31/2025 54

Final word on hashing
• The hash table is one of the most important data structures

– Efficient find, insert, and delete
– Operations based on sorted order are not so efficient!
– Useful in many, many real-world applications
– Popular topic for job interview questions

• Important to use a good hash function
– Good distribution, Uses enough of key’s components
– Not overly expensive to calculate (bit shifts good!)

• Important to keep hash table at a good size
– Prime #
– Preferable λ depends on type of table

• Side-comment: hash functions have uses beyond hash tables
– Examples: Cryptography, check-sums

1/31/2025 55

	CSE 332: Data Structures & Parallelism��Lecture 11:More Hashing
	Today
	Hash Tables: Review
	Hashing Choices
	Open Addressing: Linear Probing
	Open addressing
	Terminology
	Questions: Open Addressing: Linear Probing
	Open Addressing: Other Operations
	Primary Clustering
	Analysis of Linear Probing
	Analysis in chart form
	Open Addressing: Linear probing
	Open Addressing: Quadratic probing
	Quadratic Probing Example
	Another Quadratic Probing Example
	From bad news to good news
	Quadratic Probing:�Success guarantee for  < ½
	Clustering reconsidered
	Open Addressing: Double hashing
	Open Addressing: Double Hashing
	Double-hashing analysis
	More double-hashing facts
	Where are we?
	Rehashing
	More on rehashing
	Hashing and comparing
	Equal objects must hash the same
	By the way: comparison has rules too
	A Generally Good hashCode()
	Final word on hashing

