
CSE 332: Data Structures & Parallelism

Lecture 8: AVL Trees

Ruth Anderson
Winter 2025

Today

• Dictionaries
– AVL Trees

1/24/2025 2

1/24/2025

The AVL Balance Condition:
Left and right subtrees of every node
have heights differing by at most 1

Define: balance(x) = height(x.left) – height(x.right)

AVL property: –1 ≤ balance(x) ≤ 1, for every node x

• Ensures small depth
– Will prove this by showing that an AVL tree of height

h must have a lot of (*roughly* 2h) nodes
• Easy to maintain

– Using single and double rotations

Note: height of a null tree is -1, height of tree with a single node is 0

3

1/24/2025 4

The AVL Tree Data Structure

4

131062

115

8

14127 9

Structural properties
1. Binary tree property

(0,1, or 2 children)
2. Heights of left and right

subtrees of every node
differ by at most 1

Result:
Worst case depth of any node

is: O(log n)

Ordering property
– Same as for BST 15

111

84

6

10 12

7

Ex1: An AVL tree?

1/24/2025 5

3

1171

84

6

2

5

Ex2: An AVL tree?

1/24/2025 7

7

1161

82

5

3

Ex3: An AVL tree?

1/24/2025 9

4

Height of an AVL Tree?

Using the AVL balance property, we can
determine the minimum number of nodes in an
AVL tree of height h

Let S(h)be the minimum # of nodes in an AVL tree
of height h, then:

S(h) = S(h-1) + S(h-2) + 1
where S(-1) = 0 and S(0) = 1

Solution of Recurrence: S(h) ≈ 1.62h

1/24/2025 11

Let S(h)be the minimum # of nodes in an AVL tree of
height h, then:

S(h) = S(h-1) + S(h-2) + 1
where S(-1)=0 and S(0)=1

h Minimal AVL Tree S(h)

1/24/2025 12

Minimal AVL Tree (height = 0)

1/24/2025 13

Minimal AVL Tree (height = 1)

1/24/2025 14

Minimal AVL Tree (height = 2)

1/24/2025 15

Minimal AVL Tree (height = 3)

1/24/2025 16

Minimal AVL Tree (height = 4)

1/24/2025 17

The shallowness bound

Let S(h) = the minimum number of nodes in an AVL tree of height h
– If we can prove that S(h) grows exponentially in h, then a

tree with n nodes has a logarithmic height

• Step 1: Define S(h) inductively using AVL property
– S(-1)=0, S(0)=1, S(1)=2
– For h ≥ 1, S(h) = 1+S(h-1)+S(h-2)

• Step 2: Show this recurrence grows really fast
– Similar to Fibonacci numbers
– Can prove for all h, S(h) > φh – 1 where

φ is the golden ratio, (1+√5)/2, about 1.62
– Growing faster than 1.6h is “plenty exponential”

1/24/2025 18

h-1h-2

h

Before we prove it

• Good intuition from plots comparing:
– S(h) computed directly from the definition
– ((1+√5)/2) h

• S(h) is always bigger, up to trees with huge numbers of nodes
– Graphs aren’t proofs, so let’s prove it

1/24/2025 19

The Golden Ratio

62.1
2

51
≈

+
=φ

This is a special number

• Aside: Since the Renaissance, many artists and architects have
proportioned their work (e.g., length:height) to approximate the
golden ratio: If (a+b)/a = a/b, then a = φb

• We will need one special arithmetic fact about φ :
φ2 = ((1+51/2)/2)2

= (1 + 2*51/2 + 5)/4
= (6 + 2*51/2)/4
= (3 + 51/2)/2
= 1 + (1 + 51/2)/2
= 1 + φ

1/24/2025 20

The proof

Theorem: For all h ≥ 0, S(h) > φh – 1
Proof: By induction on h
Base cases:

S(0) = 1 > φ0 – 1 = 0 S(1) = 2 > φ1 – 1 ≈ 0.62
Inductive case (k > 1):

Show S(k+1) > φk+1 – 1 assuming S(k) > φk – 1 and S(k-1) > φk-1 – 1

S(k+1) = 1 + S(k) + S(k-1) by definition of S
> 1 + φk – 1 + φk-1 – 1 by induction
= φk + φk-1 – 1 by arithmetic (1-1=0)
= φk-1 (φ + 1) – 1 by arithmetic (factor φk-1)
= φk-1 φ2 – 1 by special property of φ
= φk+1 – 1 by arithmetic (add exponents)

S(-1)=0, S(0)=1, S(1)=2
For h ≥ 1, S(h) = 1+S(h-1)+S(h-2)

1/24/2025 21

Good news

Proof means that if we have an AVL tree, then find is O(log n)

But as we insert and delete elements, we need to:
1. Track balance
2. Detect imbalance
3. Restore balance

1/24/2025 22

92

5

10

7
Is this tree AVL balanced?
How about after insert(30)?

15

20

An AVL Tree

20

92 15

5

10

30

177

0

0 0

011

2 2

3 …
3

value

height

children

10 key

1/24/2025 23

AVL tree operations
• AVL find:

– Same as BST find

• AVL insert:
– First BST insert, then check balance and potentially “fix”

the AVL tree
– Four different imbalance cases

• AVL delete:
– The “easy way” is lazy deletion
– Otherwise, like insert we do the deletion and then have

several imbalance cases

1/24/2025 24

1/24/2025 25

Let b be the node where an imbalance occurs.
Four cases to consider. The insertion is in the

1. left subtree of the left child of b.
2. right subtree of the left child of b.
3. left subtree of the right child of b.
4. right subtree of the right child of b.

Idea: Cases 1 & 4 are solved by a single rotation.
Cases 2 & 3 are solved by a double rotation.

AVL tree insert

b

X VU
Z

ca

1 2 3 4
25

Insert: detect potential imbalance

1. Insert the new node as in a BST (a new leaf)
2. For each node on the path from the root to the new leaf, the

insertion may (or may not) have changed the node’s height
3. So after recursive insertion in a subtree, detect height imbalance

and perform a rotation to restore balance at that node

All the action is in defining the correct rotations to restore balance

Fact that makes it a bit easier:
– There must be a deepest element that is imbalanced after the

insert (all descendants still balanced)
– After rebalancing this deepest node, every node is balanced
– So at most one node needs to be rebalanced

1/24/2025 26

Case #1 Example

Insert(6)
Insert(3)
Insert(1)

1/24/2025 27

Case #1: Example

1/24/2025 28

Insert(6)
Insert(3)
Insert(1)

Third insertion violates
balance property
• happens to be at

the root

What is the only way to
fix this?

6

3

1

2

1

0

6

3

1

0

6 0

Fix: Apply “Single Rotation”
• Single rotation: The basic operation we’ll use to rebalance

– Move child of unbalanced node into parent position
– Parent becomes the “other” child (always okay in a BST!)
– Other subtrees move in only way BST allows (next slide)

1/24/2025 29

3

1 6
00

1
6

3

0

1

2

AVL Property violated here

1

Single Rotation:
1. Rotate between self and child

30

Single Rotation Pseudo-Code

void RotateWithRight(Node root) {
Node temp = root.right
root.right = temp.left
temp.left = root
root.height = max(root.right.height(),

root.left.height()) + 1
temp.height = max(temp.right.height(),

temp.left.height()) + 1
root = temp

}

a

X

Y

b

Z

root

temp

RotateRight brings up the right child

1/24/2025

The example generalized
• Node imbalanced due to insertion somewhere in

left-left grandchild increasing height
– 1 of 4 possible imbalance causes (other three coming)

• First we did the insertion, which would make b imbalanced

1/24/2025 31

b

Z
Y

a

X

h h
h

h+1
h+2 b

Z
Y

a

X

h+1 h
h

h+2
h+3

Notational note:
Oval: a node in the tree
Triangle: a subtree

The general left-left case
• Node imbalanced due to insertion somewhere in

left-left grandchild increasing height
– 1 of 4 possible imbalance causes (other three coming)

• So we rotate at b, using BST facts: X < a < Y < b < Z

1/24/2025 32

• A single rotation restores balance at the node
– To same height as before insertion (so ancestors now balanced)

b

Z
Y

a

X

h+1 h
h

h+2
h+3 a

ZY

b
h+1 h h

h+1

h+2

X

Another example: insert(16)

1/24/2025 33

104

228

15

3 6

19

17 20

24

16

Another example: insert(16)

1/24/2025 34

104

228

15

3 6

19

17 20

24

16

104

8

15

3 6

19

17

2016

22

24

The general right-right case

• Mirror image to left-left case, so you rotate the other way
– Exact same concept, but need different code

1/24/2025 35

a

ZY

X

h

h
h+1

h+3

b
h+2 b

Z
Y

a

X

h h
h+1

h+1
h+2

1/24/2025 36

Case #3 Example
Insert(1)
Insert(6)
Insert(3)

Two cases to go

Unfortunately, single rotations are not enough for insertions in the
left-right subtree or the right-left subtree

Simple example: insert(1), insert(6), insert(3)
– First wrong idea: single rotation like we did for left-left

1/24/2025 37

3

6

1

0

1

2

6

1 3

1

0 0

Two cases to go

Unfortunately, single rotations are not enough for insertions in the
left-right subtree or the right-left subtree

Simple example: insert(1), insert(6), insert(3)
– Second wrong idea: single rotation on the child of the

unbalanced node

1/24/2025 38

3

6

1

0

1

2

6

3

1

0

1

2

Sometimes two wrongs make a right
• First idea violated the BST property
• Second idea didn’t fix balance
• But if we do both single rotations, starting with the second, it

works! (And not just for this example.)
Double rotation:

1. Rotate problematic child and grandchild
2. Then rotate between self and new child

1/24/2025 39

3

6

1

0

1

2

6

3

1

0

1

2

00

1

1

3

6

40

Double Rotation Pseudo-Code

void DoubleRotateWithRight(Node root) {
RotateWithLeft(root.right)
RotateWithRight(root)

}
a

Z

c

W

b

XY

a

Z

b

c

X

Y

W

After First Rotation

1/24/2025

41

Double Rotation Completed

a

Z

b

c

X

Y

W

a

Z

b

c

XY

W

After First Rotation After Second Rotation

1/24/2025

The general right-left case

1/24/2025 42

a

X

c
b

h-1

h
h

h

VU

h+1
h+2

h+3

Z

a

X

b

h-1
h+1h

h

V
U

h+2

h+3

Z

c
h

b

X
h-1

h+1
h

h+1

VU

h+2

Z

c
h

a
h

Comments
• Like in the left-left and right-right cases, the height of the subtree

after rebalancing is the same as before the insert
– So no ancestor in the tree will need rebalancing

• Does not have to be implemented as two rotations; can just do:

1/24/2025 43

a

X

c
b

h-1

h
h

h

VU

h+1
h+2

h+3

Z

b

X
h-1

h+1
h

h+1

VU

h+2

Z

c
h

a
h

Easier to remember than you may think:
Move b to grandparent’s position and then put a, c, X, U, V, and
Z in the only legal positions for a BST

The last case: left-right

• Mirror image of right-left
– Again, no new concepts, only new code to write

1/24/2025 44

c

h-1

h

hh

VU

h+1

h+2

h+3

Z

X

a
b

b

X
h-1

h+1
h

h+1

VU

h+2

Z

c
h

a
h

1/24/2025

Insert 5

104

178

15

3 6

16

5

45

1/24/2025

Double rotation, step 1

104

178

15

3 6

16

5

106

178

15

4

3

16

5

46

1/24/2025

Double rotation, step 2

106

178

15

4

3

16

5

10

6 17

8

15

4

3

16

5

47

Insert, summarized

• Insert as in a BST

• Check back up path for imbalance, which will be 1 of 4 cases:
– node’s left-left grandchild is too tall
– node’s left-right grandchild is too tall
– node’s right-left grandchild is too tall
– node’s right-right grandchild is too tall

• Only one case occurs because tree was balanced before insert

• After the appropriate single or double rotation, the smallest-
unbalanced subtree has the same height as before the insertion
– So all ancestors are now balanced

1/24/2025 48

Now efficiency

• Worst-case complexity of find: __________
– Tree is balanced

• Worst-case complexity of insert: __________
– Tree starts balanced
– A rotation is O(1) and there’s an O(log n) path to root
– (Same complexity even without one-rotation-is-enough fact)
– Tree ends balanced

• Worst-case complexity of buildTree: _________

• delete? (see 3 ed. Weiss) requires more rotations: _________
• Lazy deletion? ________________
1/24/2025 49

Pros and Cons of AVL Trees
Arguments for AVL trees:

1. All operations logarithmic worst-case because trees are always
balanced

2. Height balancing adds no more than a constant factor to the speed
of insert and delete

Arguments against AVL trees:

1. Difficult to program & debug
2. More space for height field
3. Asymptotically faster but rebalancing takes a little time
4. Most large searches are done in database-like systems on disk and

use other structures (e.g., B-trees, our next data structure)

1/24/2025 51

More Examples…

1/24/2025 52

1/24/2025

Insert into an AVL tree: a b e c d

Student Activity 53

1/24/2025 54

1. single rotation?

2. double rotation?

3. no rotation?

Inserting what integer values
would cause the tree to need
a:

Single and Double Rotations:

9
5

2

11

7 13

30

1/24/2025 55

20

15

10

3017

12

0

10

2

3

0

92

5

0 0

1

Easy Insert

Insert(3)

Unbalanced?

1/24/2025 56

2092

155

10

3017

Insert(33)

3

12
1

0

100

2 2

3

00

Hard Insert

How to fix?

Unbalanced?

1/24/2025

Single Rotation

2092

155

10

30173

12

33

1

0

200

2 3

3

10

0

3092

205

10

333

15
1

0

110

2 2

3

00
1712

0

57

1/24/2025 58

Hard Insert

Insert(18)

How to fix?

Unbalanced?

2092

155

10

30173

12
1

0

100

2 2

3

00

1/24/2025

Single Rotation (oops!)

2092

155

10

30173

12
1

1

200

2 3

3

00

3092

205

10

3

15
1

1

020

2 3

3

0
1712

0

18
0

18
0

59

1/24/2025

Double Rotation (Step #1)

2092

155

10

30173

12
1

1

200

2 3

3

00

18
0

1792

155

10

203

12
1 200

2 3

3

10

30
0

18
0

60

1/24/2025

Double Rotation (Step #2)

1792

155

10

203

12
1 200

2 3

3

10

30
0

18
0

2092

175

10

303

15
1

0

110

2 2

3

00
12

0
18

61

	CSE 332: Data Structures & Parallelism��Lecture 8: AVL Trees
	Today
	The AVL Balance Condition:
	The AVL Tree Data Structure
	Ex1: An AVL tree?
	Ex2: An AVL tree?
	Ex3: An AVL tree?
	Height of an AVL Tree?
	Slide Number 12
	Minimal AVL Tree (height = 0)
	Minimal AVL Tree (height = 1)
	Minimal AVL Tree (height = 2)
	Minimal AVL Tree (height = 3)
	Minimal AVL Tree (height = 4)
	The shallowness bound
	Before we prove it
	The Golden Ratio
	The proof
	Good news
	An AVL Tree
	AVL tree operations
	AVL tree insert
	Insert: detect potential imbalance
	Case #1 Example
	Case #1: Example
	Fix: Apply “Single Rotation”
	Single Rotation Pseudo-Code
	The example generalized
	The general left-left case
	Another example: insert(16)
	Another example: insert(16)
	The general right-right case
	Slide Number 36
	Two cases to go
	Two cases to go
	Sometimes two wrongs make a right
	Double Rotation Pseudo-Code
	Double Rotation Completed
	The general right-left case
	Comments
	The last case: left-right
	Insert 5
	Double rotation, step 1
	Double rotation, step 2
	Insert, summarized
	Now efficiency
	Pros and Cons of AVL Trees
	More Examples…
	Insert into an AVL tree: a b e c d
	Slide Number 54
	Easy Insert
	Hard Insert
	Single Rotation
	Hard Insert
	Single Rotation (oops!)
	Double Rotation (Step #1)
	Double Rotation (Step #2)

