CSE 332: Data Structures & Parallelism Lecture 8: AVL Trees

Ruth Anderson Winter 2025

Today

- Dictionaries
	- AVL Trees

The AVL Balance Condition:

Left and right subtrees of *every node* have *heights* **differing by at most 1**

Define: **balance** (x) = height $(x$.left) – height $(x \text{.right})$

AVL property: $-1 \leq$ **balance(***x***)** \leq **1, for every node** *x*

- Ensures small depth
	- Will prove this by showing that an AVL tree of height *h* must have a lot of (**roughly** 2*^h*) nodes
- Easy to maintain
	- Using single and double rotations

Note: height of a null tree is -1, height of tree with a single node is 0

1/24/2025

The AVL Tree Data Structure

Structural properties

- 1. Binary tree property (0,1, or 2 children)
- 2. Heights of left and right subtrees of *every node* **differ by at most 1**

Result:

Worst case depth of any node is: O(log *n*)

Ordering property

– Same as for BST **¹⁵**

Ex2: An AVL tree?

Ex3: An AVL tree?

Height of an AVL Tree?

Using the AVL balance property, we can determine the minimum number of nodes in an AVL tree of height *h*

Let **S**(*h*) be the minimum # of nodes in an AVL tree of height *h*, then:

 $S(h) = S(h-1) + S(h-2) + 1$ where $S(-1) = 0$ and $S(0) = 1$

Solution of Recurrence: $S(h) \approx 1.62^h$

Let **S**(*h*) be the minimum # of nodes in an AVL tree of height *h*, then:

$$
S(h) = S(h-1) + S(h-2) + 1
$$

where $s(-1) = 0$ and $s(0) = 1$

Minimal AVL Tree

S(h)

Minimal AVL Tree (height = 0)

Minimal AVL Tree (height = 1)

Minimal AVL Tree (height = 3)

Minimal AVL Tree (height = 4)

The shallowness bound

Let *S*(*h*) = the minimum number of nodes in an AVL tree of height *h*

- If we can prove that *S(h)* grows exponentially in *h*, then a tree with *n* nodes has a logarithmic height
- Step 1: Define *S*(*h*) inductively using AVL property – *S*(-1)=0, *S*(0)=1, *S*(1)=2 – *For h*[≥] *1, S(h) = 1+S(h-1)+S(h-2)* Step 2: Show this recurrence grows really fast – Similar to Fibonacci numbers – Can prove for all *h*, $S(h) > \phi^h - 1$ where ϕ is the golden ratio, (1+ $\sqrt{5}$)/2, about 1.62 – Growing faster than 1.6*^h* is "plenty exponential" $h - 2$ *h* -1 *h*

Before we prove it

- Good intuition from plots comparing:
	- *S*(*h*) computed directly from the definition
	- ((1+√5)/2) *^h*
- *S*(*h*) is always bigger, up to trees with huge numbers of nodes
	- Graphs aren't proofs, so let's prove it

The Golden Ratio
\n
$$
\phi = \frac{1+\sqrt{5}}{2} \approx 1.62
$$
\n
$$
\alpha + b
$$
\n
$$
a + b
$$

This is a special number

- Aside: Since the Renaissance, many artists and architects have proportioned their work (e.g., length:height) to approximate the α *golden ratio*: If $(a+b)/a = a/b$, then $a = \phi b$
- We will need one special arithmetic fact about ϕ :

$$
\begin{aligned}\n\phi^2 &= \left(\left(1 + 5^{1/2} \right) / 2 \right)^2 \\
&= \left(1 + 2 \cdot 5^{1/2} + 5 \right) / 4 \\
&= \left(6 + 2 \cdot 5^{1/2} \right) / 4 \\
&= \left(3 + 5^{1/2} \right) / 2 \\
&= 1 + \left(1 + 5^{1/2} \right) / 2 \\
&= 1 + \phi\n\end{aligned}
$$

The proof

S(-1)=0, *S*(0)=1, *S*(1)=2 *For h*[≥] *1, S(h) = 1+S(h-1)+S(h-2)*

Theorem: For all $h \geq 0$, $S(h) > \phi^h - 1$ Proof: By induction on *h* Base cases: $S(0) = 1 > \phi^0 - 1 = 0$ $S(1) = 2 > \phi^1 - 1 \approx 0.62$ Inductive case $(k > 1)$: Show $S(k+1) > \phi^{k+1} - 1$ assuming $S(k) > \phi^k - 1$ and $S(k-1) > \phi^{k-1} - 1$ $S(k+1) = 1 + S(k) + S(k-1)$ by definition of *S* **>** 1 + ϕ^k – 1 + ϕ^{k-1} – 1 by induction $=\phi^k + \phi^{k-1} - 1$ by arithmetic (1-1=0) $=\phi^{k-1}$ (ϕ + 1) – 1 by arithmetic (factor ϕ^{k-1}) $=\phi^{k-1}\phi^2-1$ by special property of ϕ $=\phi^{k+1}-1$ by arithmetic (add exponents)

Good news

Proof means that if we have an AVL tree, then **find** is *O*(**log** *n*)

But as we **insert** and **delete** elements, we need to:

- 1. Track balance
- 2. Detect imbalance
- 3. Restore balance

Is this tree AVL balanced? How about after **insert(30)**?

AVL tree operations

- **AVL find**:
	- Same as BST **find**
- **AVL insert**:
	- First BST **insert**, *then* check balance and potentially "fix" the AVL tree
	- Four different imbalance cases
- **AVL delete**:
	- The "easy way" is lazy deletion
	- Otherwise, like insert we do the deletion and then have several imbalance cases

AVL tree insert

Let *b* be the node where an imbalance occurs. Four cases to consider. The insertion is in the

- 1. left subtree of the left child of *b.*
- 2. right subtree of the left child of *b.*
- 3. left subtree of the right child of *b.*
- 4. right subtree of the right child of *b.*

Idea: Cases 1 & 4 are solved by a single rotation.

Cases 2 & 3 are solved by a double rotation.

Insert: detect potential imbalance

- 1. Insert the new node as in a BST (a new leaf)
- 2. For each node on the path from the root to the new leaf, the insertion may (or may not) have changed the node's height
- 3. So after recursive insertion in a subtree, detect height imbalance and perform a *rotation* to restore balance at that node

All the action is in defining the correct rotations to restore balance

Fact that makes it a bit easier:

- There must be a deepest element that is imbalanced after the insert (all descendants still balanced)
- After rebalancing this deepest node, every node is balanced
- So at most one node needs to be rebalanced

Case #1 Example

Insert(6) Insert(3) Insert(1)

Case #1: Example

Insert(6) Insert(3) Insert(1)

Third insertion violates balance property

> • happens to be at the root

What is the only way to fix this?

Fix: Apply "Single Rotation"

- *Single rotation:* The basic operation we'll use to rebalance
	- Move child of unbalanced node into parent position
	- Parent becomes the "other" child (always okay in a BST!)
	- Other subtrees move in only way BST allows (next slide)

RotateRight brings up the right child

}

The example generalized

Notational note: Oval: a node in the tree Triangle: a subtree

- Node imbalanced due to insertion *somewhere* in **left-left grandchild** increasing height
	- 1 of 4 possible imbalance causes (other three coming)
- First we did the insertion, which would make *b* imbalanced

The general left-left case

- Node imbalanced due to insertion *somewhere* in **left-left grandchild** increasing height
	- 1 of 4 possible imbalance causes (other three coming)
- So we rotate at b , using BST facts: $X < a < Y < b < Z$

• A single rotation restores balance at the node

1/24/2025 32 – To same height as before insertion (so ancestors now balanced)

Another example: **insert(16)**

Another example: **insert(16)**

The general right-right case

- Mirror image to left-left case, so you rotate the other way
	- Exact same concept, but need different code

Case #3 Example

Insert(1) Insert(6) Insert(3)

Two cases to go

Unfortunately, single rotations are not enough for insertions in the left-right subtree or the right-left subtree

Simple example: **insert**(1), **insert**(6), **insert**(3)

– First **wrong** idea: single rotation like we did for left-left

Two cases to go

Unfortunately, single rotations are not enough for insertions in the left-right subtree or the right-left subtree

Simple example: **insert**(1), **insert**(6), **insert**(3)

– Second wrong idea: single rotation on the child of the unbalanced node

Sometimes two wrongs make a right

- First idea violated the BST property
- Second idea didn't fix balance
- But if we do both single rotations, starting with the second, it works! (And not just for this example.)

Double rotation:

- **1. Rotate problematic child and grandchild**
- **2. Then rotate between self and new child**

Double Rotation Pseudo-Code

void DoubleRotateWithRight(Node root) {

RotateWithLeft(root.right)

RotateWithRight(root)

Double Rotation Completed

The general right-left case

Comments

- Like in the left-left and right-right cases, the height of the subtree after rebalancing is the same as before the insert
	- So no ancestor in the tree will need rebalancing
- Does not have to be implemented as two rotations; can just do:

Easier to remember than you may think:

1/24/2025 43 Move b to grandparent's position and then put a, c, X, U, V, and Z in the only legal positions for a BST

The last case: left-right

- Mirror image of right-left
	- Again, no new concepts, only new code to write

Insert 5

Insert, summarized

- Insert as in a BST
- Check back up path for imbalance, which will be 1 of 4 cases:
	- node's left-left grandchild is too tall
	- node's left-right grandchild is too tall
	- node's right-left grandchild is too tall
	- node's right-right grandchild is too tall
- *Only one case occurs* because tree was balanced before insert
- After the appropriate single or double rotation, the smallestunbalanced subtree has the same height as before the insertion
	- So all ancestors are now balanced

Now efficiency

- Worst-case complexity of **find**: *__________*
	- Tree is balanced
- Worst-case complexity of **insert**: *__________*
	- Tree starts balanced
	- A rotation is *O*(1) and there's an *O*(**log** *n*) path to root
	- (Same complexity even without one-rotation-is-enough fact)
	- Tree ends balanced
- Worst-case complexity of **buildTree**: *_________*
- delete? (see 3 ed. Weiss) requires more rotations: ___________________________
- Lazy deletion? ________________ 1/24/2025 49

Pros and Cons of AVL Trees

Arguments for AVL trees:

- 1. All operations logarithmic worst-case because trees are *always* balanced
- 2. Height balancing adds no more than a constant factor to the speed of **insert** and **delete**

Arguments against AVL trees:

- 1. Difficult to program & debug
- 2. More space for height field
- 3. Asymptotically faster but rebalancing takes a little time
- 4. Most large searches are done in database-like systems on disk and use other structures (e.g., B-trees, our next data structure)

More Examples…

Insert into an AVL tree: a b e c d

Student Activity 53

Single and Double Rotations:

Inserting what integer values would cause the tree to need

1. single rotation? a:

2. double rotation?

3. no rotation?

Unbalanced?

Insert(3)

1/24/2025 55

Unbalanced?

How to fix?

Single Rotation

Hard Insert

How to fix?

Single Rotation (oops!)

Double Rotation (Step #1)

Double Rotation (Step #2)

