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Recursive Binary Search
public static boolean binarySearch(List<Integer> lst, int k){

return binarySearch(lst, k, 0, lst.size());
}
private static boolean binarySearch(List<Integer> lst, int k, int start, int end){

if(start == end)
return false;

int mid = start + (end-start)/2;
if(lst.get(mid) == k){

return true;
} else if(lst.get(mid) > k){

return binarySearch(lst, k, start, mid);
} else{

return binarySearch(lst, k, mid+1, end);
}

}
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Analysis of Recursive Algorithms
• Overall structure of recursion:

• Do some non-recursive “work”
• Do one or more recursive calls on some portion of your input
• Do some more non-recursive “work”
• Repeat until you reach a base case

• Running time: 𝑇𝑇 𝑛𝑛 = 𝑇𝑇 𝑝𝑝1 + 𝑇𝑇 𝑝𝑝2 + ⋯+ 𝑇𝑇 𝑝𝑝𝑥𝑥 + 𝑓𝑓(𝑛𝑛)
• The time it takes to run the algorithm on an input of size 𝑛𝑛 is:
• The sum of how long it takes to run the same algorithm on each smaller input
• Plus the total amount of non-recursive work done at that step

• Usually: 
• 𝑇𝑇 𝑛𝑛 = 𝑎𝑎 ⋅ 𝑇𝑇 𝑛𝑛

𝑏𝑏
+ 𝑓𝑓 𝑛𝑛

• Called “divide and conquer” 
• 𝑇𝑇 𝑛𝑛 = 𝑇𝑇 𝑛𝑛 − 𝑐𝑐 + 𝑓𝑓 𝑛𝑛

• Called “chip and conquer”
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How Efficient Is It?

• 𝑇𝑇 𝑛𝑛 = 1 + 𝑇𝑇 𝑛𝑛
2

• Base case: 𝑇𝑇 1 = 1

𝑇𝑇 𝑛𝑛 = “cost” of running the entire 
algorithm on an array of length 𝑛𝑛
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Let’s Solve the Recurrence!

𝑇𝑇 𝑛𝑛 = 1 + 𝑇𝑇( �𝑛𝑛 2)
𝑇𝑇 1 = 1

1 + 𝑇𝑇( �𝑛𝑛 4)
1 + 𝑇𝑇( �𝑛𝑛 8)

1

Substitute until 𝑇𝑇(1)
So log2 𝑛𝑛 steps

𝑇𝑇 𝑛𝑛 = �
𝑖𝑖=1

log2𝑛𝑛

1 = log2 𝑛𝑛 𝑇𝑇 𝑛𝑛 ∈ Θ log𝑛𝑛
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Make our process “prettier”

• Draw a picture of the recursion
• Identify the work done per stack frame
• Add up all the work!

• Sum is the answer!
• In this case Θ(log2 𝑛𝑛)

𝑛𝑛

𝑛𝑛/2

𝑇𝑇 𝑛𝑛 = 𝑇𝑇
𝑛𝑛
2 + 1

𝑛𝑛/4

𝑛𝑛/8

1

…

1

1

1

1

1

log2 𝑛𝑛 levels
of recursion

The “Tree Method”
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Recursive Linear Search

public static boolean linearSearch(List<Integer> lst, int k){

return linearSearch(lst, k, 0, lst.size());

}

private static boolean linearSearch(List<Integer> lst, int k, int start, int end){

if(start == end){

return false;

} else if(lst.get(start) == k){

return true;

} else{

return linearSearch(lst, k, start+1, end);

}

}
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Make our method “prettier”

• Draw a picture of the recursion
• Identify the work done per stack frame
• Add up all the work!

𝑛𝑛

𝑛𝑛 − 1

𝑇𝑇 𝑛𝑛 = 𝑇𝑇 𝑛𝑛 − 1 + 1

𝑛𝑛 − 2

𝑛𝑛 − 3

1

…

1

1

1

1

1

𝑛𝑛 levels
of recursion

Running time: Θ(𝑛𝑛)
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Recursive List Summation

public int sum(int[] list){

return sum_helper(list, 0, list.size);

}

private int sum_helper(int[] list, int low, int high){

if (low == high){ return 0; }

if (low == high-1){ return list[low]; }

int middle = (high+low)/2;

return sum_helper(list, low, middle) + sum_helper(list, middle, high);

}
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Tree Method:  𝑇𝑇 𝑛𝑛 = 2𝑇𝑇 𝑛𝑛
2

+ 𝑐𝑐

⇒ 2𝑖𝑖 ⋅ 𝑐𝑐 work per level

log2 𝑛𝑛 levels
of recursion

𝑛𝑛

𝑇𝑇 𝑛𝑛 = �
𝑖𝑖=0

(log2 𝑛𝑛) − 1

2𝑖𝑖 ⋅ 𝑐𝑐

⁄𝑛𝑛 2 ⁄𝑛𝑛 2

⁄𝑛𝑛 4 ⁄𝑛𝑛 4 ⁄𝑛𝑛 4 ⁄𝑛𝑛 4

… … … …

1 1 1 … 1 1 1

𝑐𝑐

𝑐𝑐 𝑐𝑐

𝑐𝑐 𝑐𝑐 𝑐𝑐 𝑐𝑐

1 1 1 1 1 1

Red box represents a 
problem instance

Blue value represents 
time spent at that level of 

recursion
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Recursive List Summation

𝑇𝑇 𝑛𝑛 = �
𝑖𝑖=0

(log2 𝑛𝑛) − 1

2𝑖𝑖 ⋅ 𝑐𝑐

= 𝑐𝑐 ⋅ �
𝑖𝑖=0

(log2 𝑛𝑛) − 1

2𝑖𝑖

= 𝑐𝑐
1 − 2log2 𝑛𝑛

1 − 2

A “useful” Math Identity
(see link on exercises page)
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Let’s do some more!

• For each, assume the base case is 𝑛𝑛 = 1 and 𝑇𝑇 1 = 1

• 𝑇𝑇 𝑛𝑛 = 2𝑇𝑇 𝑛𝑛
2

+ 𝑛𝑛

• 𝑇𝑇 𝑛𝑛 = 2𝑇𝑇 𝑛𝑛
2

+ 𝑛𝑛2

• 𝑇𝑇 𝑛𝑛 = 2𝑇𝑇 𝑛𝑛
8

+ 1
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Tree Method:  𝑇𝑇 𝑛𝑛 = 2𝑇𝑇 𝑛𝑛
2

+ 𝑛𝑛

⇒ 𝑛𝑛 work per level

log2 𝑛𝑛 levels
of recursion

𝑛𝑛

𝑇𝑇 𝑛𝑛 = �
𝑖𝑖=1

log2 𝑛𝑛

𝑛𝑛

⁄𝑛𝑛 2 ⁄𝑛𝑛 2

⁄𝑛𝑛 4 ⁄𝑛𝑛 4 ⁄𝑛𝑛 4 ⁄𝑛𝑛 4

… … … …

1 1 1 … 1 1 1

𝑛𝑛

𝑛𝑛
2

𝑛𝑛
2

𝑛𝑛
4

𝑛𝑛
4

𝑛𝑛
4

𝑛𝑛
4

1 1 1 1 1 1

Red box represents a 
problem instance

Blue value represents 
time spent at that level of 

recursion
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Tree Method:  𝑇𝑇 𝑛𝑛 = 2𝑇𝑇 𝑛𝑛
2

+ 𝑛𝑛2

⇒ ? ? work per level

log2 𝑛𝑛 levels
of recursion

𝑛𝑛

𝑇𝑇 𝑛𝑛 = �
𝑖𝑖=0

(log2 𝑛𝑛) −1

? ?

⁄𝑛𝑛 2 ⁄𝑛𝑛 2

⁄𝑛𝑛 4 ⁄𝑛𝑛 4 ⁄𝑛𝑛 4 ⁄𝑛𝑛 4

… … … …

1 1 1 … 1 1 1

𝑛𝑛2

𝑛𝑛2

4
𝑛𝑛2

4

𝑛𝑛2

16
𝑛𝑛2

16
𝑛𝑛2

16
𝑛𝑛2

16

1 1 1 1 1 1

Red box represents a 
problem instance

Blue value represents 
time spent at that level of 

recursion
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Tree Method:  𝑇𝑇 𝑛𝑛 = 2𝑇𝑇 𝑛𝑛
2

+ 𝑛𝑛2

⇒ 𝑛𝑛
2

2𝑖𝑖
work per level

log2 𝑛𝑛 levels
of recursion

𝑛𝑛

𝑇𝑇 𝑛𝑛 = �
𝑖𝑖=0

(log2 𝑛𝑛) −1
𝑛𝑛2

2𝑖𝑖

⁄𝑛𝑛 2 ⁄𝑛𝑛 2

⁄𝑛𝑛 4 ⁄𝑛𝑛 4 ⁄𝑛𝑛 4 ⁄𝑛𝑛 4

… … … …

1 1 1 … 1 1 1

𝑛𝑛2

𝑛𝑛2

4
𝑛𝑛2

4

𝑛𝑛2

16
𝑛𝑛2

16
𝑛𝑛2

16
𝑛𝑛2

16

1 1 1 1 1 1

Red box represents a 
problem instance

Blue value represents 
time spent at that level of 

recursion
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𝑇𝑇 𝑛𝑛 = �
𝑖𝑖=0

(log2 𝑛𝑛) − 1
𝑛𝑛2

2𝑖𝑖

= 𝑛𝑛2 ⋅ �
𝑖𝑖=0

(log2 𝑛𝑛) − 1
1
2

𝑖𝑖
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A “useful” Math Identity
(see link on exercises page)

https://courses.cs.washington.edu/courses/cse332/25wi/exercises/useful_math_identities.pdf
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𝑇𝑇 𝑛𝑛 = �
𝑖𝑖=0

(log2 𝑛𝑛) − 1
𝑛𝑛2

2𝑖𝑖

= 𝑛𝑛2 ⋅ �
𝑖𝑖=0

(log2 𝑛𝑛) − 1
1
2

𝑖𝑖

= 𝑛𝑛2 ⋅
1
𝑛𝑛 − 1
1
2 − 1

= Θ 𝑛𝑛2

A “useful” Math Identity
(see link on exercises page)
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Tree Method:  𝑇𝑇 𝑛𝑛 = 2𝑇𝑇 𝑛𝑛
8

+ 1

⇒ 2𝑖𝑖 work per level

log8 𝑛𝑛 levels
of recursion

𝑛𝑛

𝑇𝑇 𝑛𝑛 = �
𝑖𝑖=0

(log8 𝑛𝑛)−1

2𝑖𝑖

⁄𝑛𝑛 8 ⁄𝑛𝑛 8

⁄𝑛𝑛 64 ⁄𝑛𝑛 64 ⁄𝑛𝑛 64 ⁄𝑛𝑛 64

… … … …

1 1 1 … 1 1 1

1

1 1

1 1 1 1

1 1 1 1 1 1

Red box represents a 
problem instance

Blue value represents 
time spent at that level of 

recursion

1/17/2025 18



𝑇𝑇 𝑛𝑛 = �
𝑖𝑖=0

log8 𝑛𝑛 −1

2𝑖𝑖

=
1 − 2log8 𝑛𝑛

1 − 2

= 2log8 𝑛𝑛 − 1

= 𝑛𝑛log8 2 = 𝑛𝑛
1
3
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A “useful” Math Identity
(see link on exercises page)
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What matters, recursively

• For 𝑇𝑇 𝑛𝑛 = 𝑎𝑎𝑇𝑇 𝑛𝑛
𝑏𝑏

+ 𝑓𝑓(𝑛𝑛)
• The following are important for asymptotic behavior:

• The value of 𝑎𝑎
• The value of 𝑏𝑏
• Asymptotic behavior of 𝑓𝑓(𝑛𝑛)

• The following are not important for asymptotic behavior:
• Constants and non-dominant terms in 𝑓𝑓(𝑛𝑛)
• The base case
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Really common recurrences

Should know how to solve recurrences but also recognize some
really common ones:

T(n) = O(1) + T(n/2) logarithmic O(log n)
T(n) = O(1) + 2T(n/2) linear O(n)

T(n) = O(1) + T(n-1) linear O(n)
T(n) = O(n) + T(n-1) quadratic O(n2)
T(n) = O(1) + 2T(n-1) exponential O(2n)

T(n) = O(n) + T(n/2) linear O(n)
T(n) = O(n) + 2T(n/2) loglinear O(n log n)
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