
CSE 332: Data Structures & Parallelism
Lecture 6: Recurrences

Ruth Anderson
Winter 2025

1/17/2025 1

Recursive Binary Search
public static boolean binarySearch(List<Integer> lst, int k){

return binarySearch(lst, k, 0, lst.size());
}
private static boolean binarySearch(List<Integer> lst, int k, int start, int end){

if(start == end)
return false;

int mid = start + (end-start)/2;
if(lst.get(mid) == k){

return true;
} else if(lst.get(mid) > k){

return binarySearch(lst, k, start, mid);
} else{

return binarySearch(lst, k, mid+1, end);
}

}

4 5 6 7321 80 9

75 79 88 9042138 955 99

1/17/2025 2

Analysis of Recursive Algorithms
• Overall structure of recursion:

• Do some non-recursive “work”
• Do one or more recursive calls on some portion of your input
• Do some more non-recursive “work”
• Repeat until you reach a base case

• Running time: 𝑇𝑇 𝑛𝑛 = 𝑇𝑇 𝑝𝑝1 + 𝑇𝑇 𝑝𝑝2 + ⋯+ 𝑇𝑇 𝑝𝑝𝑥𝑥 + 𝑓𝑓(𝑛𝑛)
• The time it takes to run the algorithm on an input of size 𝑛𝑛 is:
• The sum of how long it takes to run the same algorithm on each smaller input
• Plus the total amount of non-recursive work done at that step

• Usually:
• 𝑇𝑇 𝑛𝑛 = 𝑎𝑎 ⋅ 𝑇𝑇 𝑛𝑛

𝑏𝑏
+ 𝑓𝑓 𝑛𝑛

• Called “divide and conquer”
• 𝑇𝑇 𝑛𝑛 = 𝑇𝑇 𝑛𝑛 − 𝑐𝑐 + 𝑓𝑓 𝑛𝑛

• Called “chip and conquer”
1/17/2025 3

How Efficient Is It?

• 𝑇𝑇 𝑛𝑛 = 1 + 𝑇𝑇 𝑛𝑛
2

• Base case: 𝑇𝑇 1 = 1

𝑇𝑇 𝑛𝑛 = “cost” of running the entire
algorithm on an array of length 𝑛𝑛

41/17/2025

Let’s Solve the Recurrence!

𝑇𝑇 𝑛𝑛 = 1 + 𝑇𝑇(�𝑛𝑛 2)
𝑇𝑇 1 = 1

1 + 𝑇𝑇(�𝑛𝑛 4)
1 + 𝑇𝑇(�𝑛𝑛 8)

1

Substitute until 𝑇𝑇(1)
So log2 𝑛𝑛 steps

𝑇𝑇 𝑛𝑛 = �
𝑖𝑖=1

log2𝑛𝑛

1 = log2 𝑛𝑛 𝑇𝑇 𝑛𝑛 ∈ Θ log𝑛𝑛

51/17/2025

Make our process “prettier”

• Draw a picture of the recursion
• Identify the work done per stack frame
• Add up all the work!

• Sum is the answer!
• In this case Θ(log2 𝑛𝑛)

𝑛𝑛

𝑛𝑛/2

𝑇𝑇 𝑛𝑛 = 𝑇𝑇
𝑛𝑛
2 + 1

𝑛𝑛/4

𝑛𝑛/8

1

…

1

1

1

1

1

log2 𝑛𝑛 levels
of recursion

The “Tree Method”

1/17/2025 6

Recursive Linear Search

public static boolean linearSearch(List<Integer> lst, int k){

return linearSearch(lst, k, 0, lst.size());

}

private static boolean linearSearch(List<Integer> lst, int k, int start, int end){

if(start == end){

return false;

} else if(lst.get(start) == k){

return true;

} else{

return linearSearch(lst, k, start+1, end);

}

}

4 5 6 7321 80 9

75 79 88 9042138 955 99

1/17/2025 7

Make our method “prettier”

• Draw a picture of the recursion
• Identify the work done per stack frame
• Add up all the work!

𝑛𝑛

𝑛𝑛 − 1

𝑇𝑇 𝑛𝑛 = 𝑇𝑇 𝑛𝑛 − 1 + 1

𝑛𝑛 − 2

𝑛𝑛 − 3

1

…

1

1

1

1

1

𝑛𝑛 levels
of recursion

Running time: Θ(𝑛𝑛)

1/17/2025 8

Recursive List Summation

public int sum(int[] list){

return sum_helper(list, 0, list.size);

}

private int sum_helper(int[] list, int low, int high){

if (low == high){ return 0; }

if (low == high-1){ return list[low]; }

int middle = (high+low)/2;

return sum_helper(list, low, middle) + sum_helper(list, middle, high);

}

1/17/2025 9

Tree Method: 𝑇𝑇 𝑛𝑛 = 2𝑇𝑇 𝑛𝑛
2

+ 𝑐𝑐

⇒ 2𝑖𝑖 ⋅ 𝑐𝑐 work per level

log2 𝑛𝑛 levels
of recursion

𝑛𝑛

𝑇𝑇 𝑛𝑛 = �
𝑖𝑖=0

(log2 𝑛𝑛) − 1

2𝑖𝑖 ⋅ 𝑐𝑐

⁄𝑛𝑛 2 ⁄𝑛𝑛 2

⁄𝑛𝑛 4 ⁄𝑛𝑛 4 ⁄𝑛𝑛 4 ⁄𝑛𝑛 4

… … … …

1 1 1 … 1 1 1

𝑐𝑐

𝑐𝑐 𝑐𝑐

𝑐𝑐 𝑐𝑐 𝑐𝑐 𝑐𝑐

1 1 1 1 1 1

Red box represents a
problem instance

Blue value represents
time spent at that level of

recursion

1/17/2025 10

Recursive List Summation

𝑇𝑇 𝑛𝑛 = �
𝑖𝑖=0

(log2 𝑛𝑛) − 1

2𝑖𝑖 ⋅ 𝑐𝑐

= 𝑐𝑐 ⋅ �
𝑖𝑖=0

(log2 𝑛𝑛) − 1

2𝑖𝑖

= 𝑐𝑐
1 − 2log2 𝑛𝑛

1 − 2

A “useful” Math Identity
(see link on exercises page)

1/17/2025 11

https://courses.cs.washington.edu/courses/cse332/25wi/exercises/useful_math_identities.pdf
https://courses.cs.washington.edu/courses/cse332/25wi/exercises.html

Let’s do some more!

• For each, assume the base case is 𝑛𝑛 = 1 and 𝑇𝑇 1 = 1

• 𝑇𝑇 𝑛𝑛 = 2𝑇𝑇 𝑛𝑛
2

+ 𝑛𝑛

• 𝑇𝑇 𝑛𝑛 = 2𝑇𝑇 𝑛𝑛
2

+ 𝑛𝑛2

• 𝑇𝑇 𝑛𝑛 = 2𝑇𝑇 𝑛𝑛
8

+ 1

1/17/2025 12

Tree Method: 𝑇𝑇 𝑛𝑛 = 2𝑇𝑇 𝑛𝑛
2

+ 𝑛𝑛

⇒ 𝑛𝑛 work per level

log2 𝑛𝑛 levels
of recursion

𝑛𝑛

𝑇𝑇 𝑛𝑛 = �
𝑖𝑖=1

log2 𝑛𝑛

𝑛𝑛

⁄𝑛𝑛 2 ⁄𝑛𝑛 2

⁄𝑛𝑛 4 ⁄𝑛𝑛 4 ⁄𝑛𝑛 4 ⁄𝑛𝑛 4

… … … …

1 1 1 … 1 1 1

𝑛𝑛

𝑛𝑛
2

𝑛𝑛
2

𝑛𝑛
4

𝑛𝑛
4

𝑛𝑛
4

𝑛𝑛
4

1 1 1 1 1 1

Red box represents a
problem instance

Blue value represents
time spent at that level of

recursion

1/17/2025 13

Tree Method: 𝑇𝑇 𝑛𝑛 = 2𝑇𝑇 𝑛𝑛
2

+ 𝑛𝑛2

⇒ ? ? work per level

log2 𝑛𝑛 levels
of recursion

𝑛𝑛

𝑇𝑇 𝑛𝑛 = �
𝑖𝑖=0

(log2 𝑛𝑛) −1

? ?

⁄𝑛𝑛 2 ⁄𝑛𝑛 2

⁄𝑛𝑛 4 ⁄𝑛𝑛 4 ⁄𝑛𝑛 4 ⁄𝑛𝑛 4

… … … …

1 1 1 … 1 1 1

𝑛𝑛2

𝑛𝑛2

4
𝑛𝑛2

4

𝑛𝑛2

16
𝑛𝑛2

16
𝑛𝑛2

16
𝑛𝑛2

16

1 1 1 1 1 1

Red box represents a
problem instance

Blue value represents
time spent at that level of

recursion

1/17/2025 14

Tree Method: 𝑇𝑇 𝑛𝑛 = 2𝑇𝑇 𝑛𝑛
2

+ 𝑛𝑛2

⇒ 𝑛𝑛
2

2𝑖𝑖
work per level

log2 𝑛𝑛 levels
of recursion

𝑛𝑛

𝑇𝑇 𝑛𝑛 = �
𝑖𝑖=0

(log2 𝑛𝑛) −1
𝑛𝑛2

2𝑖𝑖

⁄𝑛𝑛 2 ⁄𝑛𝑛 2

⁄𝑛𝑛 4 ⁄𝑛𝑛 4 ⁄𝑛𝑛 4 ⁄𝑛𝑛 4

… … … …

1 1 1 … 1 1 1

𝑛𝑛2

𝑛𝑛2

4
𝑛𝑛2

4

𝑛𝑛2

16
𝑛𝑛2

16
𝑛𝑛2

16
𝑛𝑛2

16

1 1 1 1 1 1

Red box represents a
problem instance

Blue value represents
time spent at that level of

recursion

1/17/2025 15

𝑇𝑇 𝑛𝑛 = �
𝑖𝑖=0

(log2 𝑛𝑛) − 1
𝑛𝑛2

2𝑖𝑖

= 𝑛𝑛2 ⋅ �
𝑖𝑖=0

(log2 𝑛𝑛) − 1
1
2

𝑖𝑖

1/17/2025 16

A “useful” Math Identity
(see link on exercises page)
A “useful” Math Identity
(see link on exercises page)

https://courses.cs.washington.edu/courses/cse332/25wi/exercises/useful_math_identities.pdf
https://courses.cs.washington.edu/courses/cse332/25wi/exercises.html
https://courses.cs.washington.edu/courses/cse332/25wi/exercises/useful_math_identities.pdf
https://courses.cs.washington.edu/courses/cse332/25wi/exercises.html

𝑇𝑇 𝑛𝑛 = �
𝑖𝑖=0

(log2 𝑛𝑛) − 1
𝑛𝑛2

2𝑖𝑖

= 𝑛𝑛2 ⋅ �
𝑖𝑖=0

(log2 𝑛𝑛) − 1
1
2

𝑖𝑖

= 𝑛𝑛2 ⋅
1
𝑛𝑛 − 1
1
2 − 1

= Θ 𝑛𝑛2

A “useful” Math Identity
(see link on exercises page)

1/17/2025 17

https://courses.cs.washington.edu/courses/cse332/25wi/exercises/useful_math_identities.pdf
https://courses.cs.washington.edu/courses/cse332/25wi/exercises.html

Tree Method: 𝑇𝑇 𝑛𝑛 = 2𝑇𝑇 𝑛𝑛
8

+ 1

⇒ 2𝑖𝑖 work per level

log8 𝑛𝑛 levels
of recursion

𝑛𝑛

𝑇𝑇 𝑛𝑛 = �
𝑖𝑖=0

(log8 𝑛𝑛)−1

2𝑖𝑖

⁄𝑛𝑛 8 ⁄𝑛𝑛 8

⁄𝑛𝑛 64 ⁄𝑛𝑛 64 ⁄𝑛𝑛 64 ⁄𝑛𝑛 64

… … … …

1 1 1 … 1 1 1

1

1 1

1 1 1 1

1 1 1 1 1 1

Red box represents a
problem instance

Blue value represents
time spent at that level of

recursion

1/17/2025 18

𝑇𝑇 𝑛𝑛 = �
𝑖𝑖=0

log8 𝑛𝑛 −1

2𝑖𝑖

=
1 − 2log8 𝑛𝑛

1 − 2

= 2log8 𝑛𝑛 − 1

= 𝑛𝑛log8 2 = 𝑛𝑛
1
3

1/17/2025 19

A “useful” Math Identity
(see link on exercises page)

https://courses.cs.washington.edu/courses/cse332/25wi/exercises/useful_math_identities.pdf
https://courses.cs.washington.edu/courses/cse332/25wi/exercises.html

What matters, recursively

• For 𝑇𝑇 𝑛𝑛 = 𝑎𝑎𝑇𝑇 𝑛𝑛
𝑏𝑏

+ 𝑓𝑓(𝑛𝑛)
• The following are important for asymptotic behavior:

• The value of 𝑎𝑎
• The value of 𝑏𝑏
• Asymptotic behavior of 𝑓𝑓(𝑛𝑛)

• The following are not important for asymptotic behavior:
• Constants and non-dominant terms in 𝑓𝑓(𝑛𝑛)
• The base case

1/17/2025 20

Really common recurrences

Should know how to solve recurrences but also recognize some
really common ones:

T(n) = O(1) + T(n/2) logarithmic O(log n)
T(n) = O(1) + 2T(n/2) linear O(n)

T(n) = O(1) + T(n-1) linear O(n)
T(n) = O(n) + T(n-1) quadratic O(n2)
T(n) = O(1) + 2T(n-1) exponential O(2n)

T(n) = O(n) + T(n/2) linear O(n)
T(n) = O(n) + 2T(n/2) loglinear O(n log n)

4/07/2023 21

	CSE 332: Data Structures & Parallelism��Lecture 6: Recurrences
	Recursive Binary Search
	Analysis of Recursive Algorithms
	How Efficient Is It?
	Let’s Solve the Recurrence!
	Make our process “prettier”
	Recursive Linear Search
	Make our method “prettier”
	Recursive List Summation
	Tree Method: 𝑇 𝑛 =2𝑇 𝑛 2 +𝑐
	Recursive List Summation
	Let’s do some more!
	Tree Method: 𝑇 𝑛 =2𝑇 𝑛 2 +𝑛
	Tree Method: 𝑇 𝑛 =2𝑇 𝑛 2 + 𝑛 2
	Tree Method: 𝑇 𝑛 =2𝑇 𝑛 2 + 𝑛 2
	Slide Number 16
	Slide Number 17
	Tree Method: 𝑇 𝑛 =2𝑇 𝑛 8 +1
	Slide Number 19
	What matters, recursively
	Really common recurrences

