CSE 332: Data Structures & Parallelism Lecture 6: Recurrences

Ruth Anderson Winter 2025

West Ologan) CRecursive Binary Search


```
public static boolean binarySearch(List<Integer> lst, int k){
        return binarySearch(lst, k, 0, lst.size());
private static boolean binarySearch(List<Integer> lst, int k, int start, int end){
 - if(start == end)
        return false;
  int mid = start (+)(end-start)/);
   if(lst get(mid) == k){
        return true;
    } else if(lst.get(mid)(>)k){
        return binarySearch(lst, k, start, mid);
    } else{
        return binarySearch(lst, k, mid+1, end);
```

Analysis of Recursive Algorithms

• Overall structure of recursion:

 $T(n) = 9 + T(\frac{1}{2})$

- Do some non-recursive "work"
- Do one or more recursive calls on some portion of your input
- Do some more non-recursive "work"
- Repeat until you reach a base case
- Running time: $T(n) = T(p_1) + T(p_2) + \dots + T(p_x) + f(n)$
 - The time it takes to run the algorithm on an input of size n is:
 - The sum of how long it takes to run the same algorithm on each smaller input
 - Plus the total amount of non-recursive work done at that step
- Usually:
- $1/\sqrt{2}$
- $T(n) = a \cdot T\left(\frac{n}{b}\right) + \underline{f(n)}$
 - Called "divide and conquer"
 - T(n) = T(n-c) + f(n)
- Called "chip and conquer"

How Efficient Is It?

•
$$T(n) = 1 + T\left(\left[\frac{n}{2}\right]\right)$$

• Base case: T(1) = 1

T(n) = "cost" of running the entire algorithm on an array of length n

Let's Solve the Recurrence!

N 1

Substitute until T(1)

So $log_2 n$ steps

$$T(n) \in \Theta(\log n)$$

Make our process "prettier"

- Draw a picture of the recursion
- Identify the work done per stack frame
- Add up all the work!
 - Sum is the answer!
 - In this case $\Theta(\log_2 n)$

The "Tree Method"

Recursive Linear Search


```
public static boolean linearSearch(List<Integer> lst, int k){
        return linearSearch(lst, k, 0, lst.size());
private static boolean linearSearch(List<Integer> lst, int k, int start, int end){
    if(start == end){
        return false;
    } else if(lst.get(start
        return true;
    } else{
        return linearSearch(lst, k, start+1)
```

Make our method "prettier"

- Draw a picture of the recursion
- Identify the work done per stack frame
- Add up all the work!

Running time: $\Theta(n)$

$T(n) = C + 2 \cdot T(\frac{n}{z})$

Recursive List Summation

```
public int sum(int[] list){
    return sum_helper(list, 0, list.size);
}

private int sum_helper(int[] list, int low, int high){
    if (low == high){ return 0; }
    if (low == high-1){ return list[low]; }
    int middle = (high+low)/2;
    return sum_helper(list, low, middle) + sum_helper(list, middle, high);
}
```

Tree Method: $T(n) = 2T(\frac{n}{2}) + c$

Let's do some more!

• For each, assume the base case is n=1 and T(1)=1

•
$$T(n) = 2T\left(\frac{n}{2}\right) + n$$

•
$$T(n) = 2T\left(\frac{n}{2}\right) + n^2$$

•
$$T(n) = 2T\left(\frac{n}{8}\right) + 1$$

Tree Method: $T(n) = 2T(\frac{n}{2}) + n$

Red box represents a problem instance

 \Rightarrow *n* work per level

Plog₂ *n* levels of recursion

$$T(n) = \sum_{i=1}^{\log_2 n} n$$

Tree Method: $T(n) = 2T(\frac{n}{2}) + n^2$

Red box represents a problem instance

Blue value represents ntime spent at that level of recursion n/2n/4n/4n/4

 \Rightarrow ?? work per level

 $log_2 n$ levels of recursion

$$T(n) = \sum_{i=0}^{(\log_2 n) - 1} ??$$

Tree Method: $T(n) = 2T(\frac{n}{2}) + n^2$

Red box represents a problem instance

 $\Rightarrow \frac{n^2}{2^i}$ work per level

log₂ n levels of recursion

$$T(n) = \sum_{i=0}^{(\log_2 n) - 1} \frac{n^2}{2^i}$$

$$T(n) = \sum_{i=0}^{(\log_2 n) - 1} \frac{n^2}{2^i}$$

$$= n^2 \cdot \sum_{i=0}^{(\log_2 n) - 1} \left(\frac{1}{2}\right)^i$$

A "useful" Math Identity (see link on exercises page)

$$\sum_{i=0}^{n-1} x^i = \frac{1-x^n}{1-x}$$

$$T(n) = \sum_{i=0}^{(\log_2 n) - 1} \frac{n^2}{2^i}$$

$$= n^2 \cdot \sum_{i=0}^{(\log_2 n) - 1} \left(\frac{1}{2}\right)^i$$

$$= n^2 \cdot \left(\frac{\frac{1}{n} - 1}{\frac{1}{2} - 1}\right) = \Theta(n^2)$$

A "useful" Math Identity (see link on exercises page)

$$\sum_{i=0}^{n-1} x^i = \frac{1-x^n}{1-x}$$

Tree Method: $T(n) = 2T\left(\frac{n}{8}\right) + 1$

Red box represents a problem instance

 \Rightarrow 2ⁱ work per level

 $\frac{\log_8 n}{\log_8 n}$ levels of recursion

$$T(n) = \sum_{i=0}^{(\log_8 n) - 1} 2^i$$

$$T(n) = \sum_{i=0}^{(\log_8 n) - 1} 2^i$$

$$= \left(\frac{1 - 2^{\log_8 n}}{1 - 2}\right)$$

$$=2^{\log_8 n}-1$$

$$= n^{\log_8 2} = n^{\frac{1}{3}}$$

A "useful" Math Identity (see link on exercises page)

$$\sum_{i=0}^{n-1} x^i = \frac{1-x^n}{1-x}$$

$$a^{\log_b c} = c^{\log_b a}$$

What matters, recursively

- For $T(n) = aT\left(\frac{n}{b}\right) + f(n)$
 - The following are important for asymptotic behavior:
 - The value of *a*
 - The value of b
 - Asymptotic behavior of f(n)
 - The following are not important for asymptotic behavior:
 - Constants and non-dominant terms in f(n)
 - The base case

Really common recurrences

Should know how to solve recurrences but also recognize some really common ones:

$$T(n) = O(1) + T(n/2)$$
 logarithmic $O(\log n)$
 $T(n) = O(1) + 2T(n/2)$ linear $O(n)$
 $T(n) = O(1) + T(n-1)$ linear $O(n)$
 $T(n) = O(n) + T(n-1)$ quadratic $O(n^2)$
 $T(n) = O(1) + 2T(n-1)$ exponential $O(2^n)$
 $T(n) = O(n) + T(n/2)$ linear $O(n)$
 $T(n) = O(n) + 2T(n/2)$ loglinear $O(n)$

4/07/2023 21