
CSE 332: Data Structures & Parallelism

Lecture 5: Binary Heaps, Continued

Ruth Anderson
Winter 2025

Today

• Binary Min Heap implementation
– Insert
– Deletemin
– Buildheap

1/15/2025 2

Review

• Priority Queue ADT: insert comparable object, deleteMin
• Binary heap data structure: Complete binary tree where each

node has priority value greater than its parent
• O(height-of-tree)=O(log n) insert and deleteMin operations

– insert: put at new last position in tree and percolate-up
– deleteMin: remove root, put last element at root and

percolate-down
• But: tracking the “last position” is painful and we can do better

1/15/2025

insert deleteMin

6 2
15 23

12 18
45 3 7 996040

8020

10

700 50

85

3

1/15/2025 4

Array Representation of Binary Trees
Important: On our Exercises start counting from 0

From node i:

left child: i*2
right child: i*2+1
parent: i/2

(wasting index 0 is
convenient for the
index arithmetic)implicit (array) implementation:

A B C D E F G H I J K L
0 1 2 3 4 5 6 7 8 9 10 11 12 13

GED

CB

A

J KH I

F

L

7

1

2 3

4 5 6

98 10 11 12

http://xkcd.com/163

1/15/2025 5

Pseudocode: insert
void insert(int val) {

if(size==arr.length-1)
resize();

size++;
i=percolateUp(size,val);
arr[i] = val;

}

int percolateUp(int hole,
int val) {

while(hole > 1 &&
val < arr[hole/2]){

arr[hole] = arr[hole/2];
hole = hole / 2;

}
return hole;

}

996040

8020

10

700 50

85

10 20 80 40 60 85 99 700 50
0 1 2 3 4 5 6 7 8 9 10 11 12 13

This pseudocode uses ints. In real use,
you will have data nodes with priorities.

1/15/2025 6

Important: On our Exercises start counting from 0

Pseudocode: deleteMin
int deleteMin() {
if(isEmpty()) throw…
ans = arr[1];
hole = percolateDown

(1,arr[size]);
arr[hole] = arr[size];
size--;
return ans;

}

int percolateDown(int hole,
int val) {

while(2*hole <= size) {
left = 2*hole;
right = left + 1;
if(arr[left] < arr[right]

|| right > size)
target = left;

else
target = right;

if(arr[target] < val) {
arr[hole] = arr[target];
hole = target;

} else
break;

}
return hole;
}

996040

8020

10

700 50

85

10 20 80 40 60 85 99 700 50
0 1 2 3 4 5 6 7 8 9 10 11 12 13

This pseudocode uses ints. In real use,
you will have data nodes with priorities.

1/15/2025 7

Important: On our Exercises start counting from 0

Example

1. insert: 16, 32, 4, 57, 80, 43, 2
2. deleteMin

1/15/2025

0 1 2 3 4 5 6 7

8

Important: On our Exercises start counting from 0

Other operations

• decreaseKey: given pointer to object in priority queue (e.g., its
array index), lower its priority value by p
– Change priority and percolate up

• increaseKey: given pointer to object in priority queue (e.g., its
array index), raise its priority value by p
– Change priority and percolate down

• remove: given pointer to object in priority queue (e.g., its array
index), remove it from the queue
– decreaseKey with p = ∞, then deleteMin

Running time for all these operations?

1/15/2025 11

Evaluating the Array Implementation…
Advantages:

Minimal amount of wasted space:
– Only index 0 and any unused space on right in the array
– No "holes" due to complete tree property
– No wasted space representing tree edges
Fast lookups:
– Benefit of array lookup speed
– Multiplying and dividing by 2 is extremely fast (can be done

through bit shifting (see CSE 351)
– Last used position is easily found by using the PQueue's size

for the index
Disdvantages:

– What if the array gets too full (or wastes space by being too
empty)? Array will have to be resized.

Advantages outweigh Disadvantages: This is how it is done!

1/15/2025 12

So why O(1) average-case insert?

• Yes, insert's worst case is O(log n)
• The trick is that it all depends on the order the

items are inserted (What is the worst case order?)
• Experimental studies of randomly ordered inputs

shows the following:
– Average 2.607 comparisons per insert

(# of percolation passes)
– An element usually moves up 1.607 levels

• deleteMin is average O(log n)
– Moving a leaf to the root usually requires re-percolating

that value back to the bottom

1/15/2025 13

Aside: Insert run-time: Take 2

• Insert: Place in next spot, percUp
• How high do we expect it to go?
• Aside: Complete Binary Tree

– Each full row has 2x nodes of parent row
– 1+2+4+8+…+2k= 2k+1-1
– Bottom level has ~1/2 of all nodes
– Second to bottom has ~1/4 of all nodes

• PercUp Intuition:
– Move up if value is less than parent
– Inserting a random value, likely to have value not near highest, nor

lowest; somewhere in middle
– Given a random distribution of values in the heap, bottom row should

have the upper half of values, 2nd from bottom row, next 1/4
– Expect to only raise a level or 2, even if h is large

• Worst case: still O(logn)
• Expected case: O(1)
• Of course, there’s no guarantee; it may percUp to the root

996040

8020

10

700 50

85

1/15/2025 14

Building a Heap

Suppose you have n items you want to put in a new priority queue
• A sequence of n insert operations works
• Runtime?

Can we do better?
• If we only have access to insert and deleteMin operations,

then NO.
• There is a faster way - O(n), but that requires the ADT to have a

specialized buildHeap operation

Important issue in ADT design: how many specialized operations?
–Tradeoff: Convenience, Efficiency, Simplicity

1/15/2025 15

Floyd’s buildHeap Method

Recall our general strategy for working with the heap:
– Preserve structure property
– Break and restore heap ordering property

Floyd’s buildHeap:
1. Create a complete tree by putting the n items in array indices

1, . . . n
2. Treat the array as a heap and fix the heap-order property

– Exactly how we do this is where we gain efficiency

1/15/2025 16

Thinking about buildHeap

• Say we start with this array:
[12,5,11,3,10,2,9,4,8,1,7,6]

• To “fix” the ordering can we use:
– percolateUp?
– percolateDown?

1/15/2025

6718

92103

115

12

4

17

Floyd’s buildHeap Method

Bottom-up:
• Leaves are already in heap order
• Work up toward the root one level at a time

1/15/2025

void buildHeap() {
for(i = size/2; i>0; i--) {

val = arr[i];
hole = percolateDown(i,val);
arr[hole] = val;

}
}

18

Important: On our Exercises start counting from 0

buildHeap Example
• Say we start with this array:

[12,5,11,3,10,2,9,4,8,1,7,6]

• In tree form for readability
– Red for node not less than

descendants
• heap-order problem

– Notice no leaves are red
– Check/fix each non-leaf

bottom-up (6 steps here)

1/15/2025

6718

92103

115

12

4

19

buildHeap Example

1/15/2025

6718

92103

115

12

4 6718

92103

115

12

4

Step 1

• Happens to already be less than child

20

buildHeap Example

1/15/2025

6718

92103

115

12

4

Step 2

• Percolate down (notice that moves 1 up)

67108

9213

115

12

4

21

buildHeap Example

1/15/2025

Step 3

• Another nothing-to-do step

67108

9213

115

12

4 67108

9213

115

12

4

22

buildHeap Example

1/15/2025

Step 4

• Percolate down as necessary (steps 4a and 4b)

117108

9613

25

12

467108

9213

115

12

4

23

buildHeap Example

1/15/2025

Step 5

117108

9653

21

12

4117108

9613

25

12

4

24

buildHeap Example

1/15/2025

Step 6

117108

9654

23

1

12117108

9653

21

12

4

25

But is it right?

• “Seems to work”
– Let’s prove it restores the heap property (correctness)
– Then let’s prove its running time (efficiency)

1/15/2025

void buildHeap() {
for(i = size/2; i>0; i--) {
val = arr[i];
hole = percolateDown(i,val);
arr[hole] = val;

}
}

26

Correctness

Loop Invariant: For all j>i, arr[j] is less than its children
• True initially: If j > size/2, then j is a leaf

– Otherwise its left child would be at position > size
• True after one more iteration: loop body and percolateDown

make arr[i] less than children without breaking the property
for any descendants

So after the loop finishes, all nodes are less than their children

1/15/2025

void buildHeap() {
for(i = size/2; i>0; i--) {
val = arr[i];
hole = percolateDown(i,val);
arr[hole] = val;

}
}

27

1/15/2025 28

40 20 80 30 61 5 9 700 50 60
0 1 2 3 4 5 6 7 8 9 10 11 12 13

void buildHeap() {
for(i = size/2; i>0; i--) {
val = arr[i];
hole = percolateDown(i,val);
arr[hole] = val;

}
}

961
30

8020

40

700 50

5

60

Loop Invariant:
For all j>i, arr[j] is less than its children

• True initially:
If j > size/2, then j is a leaf

• True after one more iteration:
loop body and percolateDown
make arr[i] less than children
without breaking the property
for any descendants

So after the loop finishes,
all nodes are less than their children

Efficiency

Easy argument: buildHeap is O(n log n) where n is size
• size/2 loop iterations
• Each iteration does one percolateDown, each is O(log n)

This is correct, but there is a more precise (“tighter”) analysis of
the algorithm…

1/15/2025

void buildHeap() {
for(i = size/2; i>0; i--) {
val = arr[i];
hole = percolateDown(i,val);
arr[hole] = val;

}
}

29

Efficiency

Better argument: buildHeap is O(n) where n is size
• size/2 total loop iterations: O(n)
• 1/2 the loop iterations percolate at most 1 step
• 1/4 the loop iterations percolate at most 2 steps
• 1/8 the loop iterations percolate at most 3 steps… etc.
• ((1/2) + (2/4) + (3/8) + (4/16) + (5/32) + …) = 2 (page 4 of Weiss)

– So at most 2(size/2) total percolate steps: O(n)
– Also see Weiss 6.3.4, sum of heights of nodes in a perfect tree

1/15/2025

void buildHeap() {
for(i = size/2; i>0; i--) {
val = arr[i];
hole = percolateDown(i,val);
arr[hole] = val;

}
}

30

Lessons from buildHeap

• Without buildHeap, our ADT already let clients implement their
own in θ(n log n) worst case
– Worst case is inserting lower priority values later

• By providing a specialized operation internally (with access to the
data structure), we can do O(n) worst case
– Intuition: Most data is near a leaf, so better to percolate down

• Can analyze this algorithm for:
– Correctness: Non-trivial inductive proof using loop invariant
– Efficiency:

• First analysis easily proved it was O(n log n)
• A “tighter” analysis shows same algorithm is O(n)

1/15/2025 31

More heaps (see Weiss if curious)

• d-heaps: have d children instead of 2 (Weiss 6.5)
– Makes heaps shallower, useful for heaps too big for memory

• Leftist heaps, skew heaps, binomial queues (Weiss 6.6-6.8)
– Different data structures for priority queues that support a

logarithmic time merge operation (impossible with binary
heaps)

– merge: given two priority queues, make one priority queue
– Insert & deleteMin defined in terms of merge

Aside: How might you merge binary heaps:
• If one heap is much smaller than the other?
• If both are about the same size?

1/15/2025 32

	CSE 332: Data Structures & Parallelism��Lecture 5: Binary Heaps, Continued
	Today
	Review
	Array Representation of Binary Trees
	Slide Number 5
	Pseudocode: insert
	Pseudocode: deleteMin
	Example
	Other operations
	Evaluating the Array Implementation…
	So why O(1) average-case insert?
	Aside: Insert run-time: Take 2
	Building a Heap
	Floyd’s buildHeap Method
	Thinking about buildHeap
	Floyd’s buildHeap Method
	buildHeap Example
	buildHeap Example
	buildHeap Example
	buildHeap Example
	buildHeap Example
	buildHeap Example
	buildHeap Example
	But is it right?
	Correctness
	Slide Number 28
	Efficiency
	Efficiency
	Lessons from buildHeap
	More heaps (see Weiss if curious)

