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Today

• Binary Min Heap implementation
– Insert
– Deletemin
– Buildheap
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Review

• Priority Queue ADT: insert comparable object, deleteMin
• Binary heap data structure: Complete binary tree where each 

node has priority value greater than its parent
• O(height-of-tree)=O(log n) insert and deleteMin operations

– insert: put at new last position in tree and percolate-up
– deleteMin: remove root, put last element at root and 

percolate-down
• But: tracking the “last position” is painful and we can do better
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Array Representation of Binary Trees
Important: On our Exercises start counting from 0

From node i:

left child: i*2
right child: i*2+1
parent: i/2

(wasting index 0 is 
convenient for the 
index arithmetic)implicit (array) implementation:

A B C D E F G H I J K L
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http://xkcd.com/163
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Pseudocode: insert
void insert(int val) {

if(size==arr.length-1)
resize();

size++;
i=percolateUp(size,val);
arr[i] = val;

}

int percolateUp(int hole, 
int val) {

while(hole > 1 &&
val < arr[hole/2]){

arr[hole] = arr[hole/2];
hole = hole / 2;

}
return hole;

}
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This pseudocode uses ints.  In real use, 
you will have data nodes with priorities.
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Pseudocode: deleteMin
int deleteMin() {
if(isEmpty()) throw…
ans = arr[1];
hole = percolateDown

(1,arr[size]);
arr[hole] = arr[size];
size--;
return ans;

}

int percolateDown(int hole,
int val) {

while(2*hole <= size) {
left = 2*hole; 
right = left + 1;
if(arr[left] < arr[right]

|| right > size)
target = left;

else
target = right;

if(arr[target] < val) {
arr[hole] = arr[target];
hole = target;

} else
break;

}
return hole;
}
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This pseudocode uses ints.  In real use, 
you will have data nodes with priorities.
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Example

1. insert: 16, 32, 4, 57, 80, 43, 2
2. deleteMin
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Other operations

• decreaseKey: given pointer to object in priority queue (e.g., its 
array index), lower its priority value by p
– Change priority and percolate up

• increaseKey: given pointer to object in priority queue (e.g., its 
array index), raise its priority value by p
– Change priority and percolate down

• remove: given pointer to object in priority queue (e.g., its array 
index), remove it from the queue
– decreaseKey with p = ∞, then deleteMin

Running time for all these operations?
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Evaluating the Array Implementation…
Advantages:

Minimal amount of wasted space:
– Only index 0 and any unused space on right in the array
– No "holes" due to complete tree property
– No wasted space representing tree edges
Fast lookups:
– Benefit of array lookup speed
– Multiplying and dividing by 2 is extremely fast (can be done 

through bit shifting (see CSE 351)
– Last used position is easily found by using the PQueue's size 

for the index
Disdvantages: 

– What if the array gets too full (or wastes space by being too 
empty)? Array will have to be resized.

Advantages outweigh Disadvantages: This is how it is done!
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So why O(1) average-case insert?

• Yes, insert's worst case is O(log n)
• The trick is that it all depends on the order the 

items are inserted (What is the worst case order?)
• Experimental studies of randomly ordered inputs 

shows the following:
– Average 2.607 comparisons per insert

(# of percolation passes)
– An element usually moves up 1.607 levels 

• deleteMin is average O(log n)
– Moving a leaf to the root usually requires re-percolating 

that value back to the bottom
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Aside: Insert run-time:  Take 2

• Insert: Place in next spot, percUp
• How high do we expect it to go?
• Aside: Complete Binary Tree

– Each full row has 2x nodes of parent row
– 1+2+4+8+…+2k= 2k+1-1
– Bottom level has ~1/2 of all nodes
– Second to bottom has ~1/4 of all nodes

• PercUp Intuition:
– Move up if value is less than parent
– Inserting a random value, likely to have value not near highest, nor 

lowest; somewhere in middle
– Given a random distribution of values in the heap, bottom row should 

have the upper half of values, 2nd from bottom row, next 1/4
– Expect to only raise a level or 2, even if h is large

• Worst case: still O(logn)
• Expected case: O(1)
• Of course, there’s no guarantee; it may percUp to the root 
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Building a Heap

Suppose you have n items you want to put in a new priority queue
• A sequence of n insert operations works
• Runtime?

Can we do better?
• If we only have access to insert and deleteMin operations, 

then NO.
• There is a faster way - O(n), but that requires the ADT to have a 

specialized buildHeap operation

Important issue in ADT design: how many specialized operations?
–Tradeoff: Convenience, Efficiency, Simplicity
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Floyd’s buildHeap Method

Recall our general strategy for working with the heap: 
– Preserve structure property 
– Break and restore heap ordering property 

Floyd’s buildHeap:
1. Create a complete tree by putting the n items in array indices  

1, . . .  n
2. Treat the array as a heap and fix the heap-order property 

– Exactly how we do this is where we gain efficiency 
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Thinking about buildHeap

• Say we start with this array:
[12,5,11,3,10,2,9,4,8,1,7,6]

• To “fix” the ordering can we use:
– percolateUp?
– percolateDown?
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Floyd’s buildHeap Method

Bottom-up: 
• Leaves are already in heap order 
• Work up toward the root one level at a time 
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void buildHeap() {
for(i = size/2; i>0; i--) {

val = arr[i];
hole = percolateDown(i,val);
arr[hole] = val;

}
}
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buildHeap Example
• Say we start with this array:

[12,5,11,3,10,2,9,4,8,1,7,6]

• In tree form for readability
– Red for node not less than 

descendants 
• heap-order problem

– Notice no leaves are red
– Check/fix each non-leaf 

bottom-up (6 steps here)
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buildHeap Example
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• Happens to already be less than child
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buildHeap Example
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• Percolate down (notice that moves 1 up)
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buildHeap Example
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Step 3

• Another nothing-to-do step
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buildHeap Example
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Step 4

• Percolate down as necessary (steps 4a and 4b)
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buildHeap Example
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Step 5
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buildHeap Example
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But is it right?

• “Seems to work”
– Let’s prove it restores the heap property (correctness)
– Then let’s prove its running time (efficiency)
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void buildHeap() {
for(i = size/2; i>0; i--) {
val = arr[i];
hole = percolateDown(i,val);
arr[hole] = val;

}
}
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Correctness

Loop Invariant: For all j>i, arr[j] is less than its children
• True initially: If j > size/2, then j is  a leaf

– Otherwise its left child would be at position > size
• True after one more iteration: loop body and percolateDown

make arr[i] less than children without breaking the property 
for any descendants

So after the loop finishes, all nodes are less than their children
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void buildHeap() {
for(i = size/2; i>0; i--) {
val = arr[i];
hole = percolateDown(i,val);
arr[hole] = val;

}
}
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void buildHeap() {
for(i = size/2; i>0; i--) {
val = arr[i];
hole = percolateDown(i,val);
arr[hole] = val;

}
}
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Loop Invariant:
For all j>i, arr[j] is less than its children

• True initially: 
If j > size/2, then j is  a leaf

• True after one more iteration: 
loop body and percolateDown
make arr[i] less than children 
without breaking the property 
for any descendants

So after the loop finishes, 
all nodes are less than their children



Efficiency

Easy argument:  buildHeap is O(n log n) where n is size
• size/2 loop iterations
• Each iteration does one percolateDown, each is O(log n)

This is correct, but there is a more precise (“tighter”) analysis of 
the algorithm…
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void buildHeap() {
for(i = size/2; i>0; i--) {
val = arr[i];
hole = percolateDown(i,val);
arr[hole] = val;

}
}
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Efficiency

Better argument:  buildHeap is O(n) where n is size
• size/2 total loop iterations: O(n)
• 1/2 the loop iterations percolate at most 1 step
• 1/4 the loop iterations percolate at most 2 steps
• 1/8 the loop iterations percolate at most 3 steps… etc.
• ((1/2) + (2/4) + (3/8) + (4/16) + (5/32) + …) = 2 (page 4 of Weiss)

– So at most 2(size/2) total percolate steps: O(n) 
– Also see Weiss 6.3.4, sum of heights of nodes in a perfect tree
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void buildHeap() {
for(i = size/2; i>0; i--) {
val = arr[i];
hole = percolateDown(i,val);
arr[hole] = val;

}
}
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Lessons from buildHeap

• Without buildHeap, our ADT already let clients implement their 
own in θ(n log n) worst case
– Worst case is inserting lower priority values later

• By providing a specialized operation internally (with access to the 
data structure), we can do O(n) worst case
– Intuition: Most data is near a leaf, so better to percolate down

• Can analyze this algorithm for:
– Correctness: Non-trivial inductive proof using loop invariant
– Efficiency:

• First analysis easily proved it was O(n log n)
• A “tighter” analysis shows same algorithm is O(n)
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More heaps (see Weiss if curious)

• d-heaps: have d children instead of 2 (Weiss 6.5)
– Makes heaps shallower, useful for heaps too big for memory

• Leftist heaps, skew heaps, binomial queues (Weiss 6.6-6.8)
– Different data structures for priority queues that support a 

logarithmic time merge operation (impossible with binary 
heaps)

– merge: given two priority queues, make one priority queue
– Insert & deleteMin defined in terms of merge

Aside: How might you merge binary heaps:
• If one heap is much smaller than the other?
• If both are about the same size?

1/15/2025 32


	CSE 332: Data Structures & Parallelism��Lecture 5: Binary Heaps, Continued
	Today
	Review
	Array Representation of Binary Trees
	Slide Number 5
	Pseudocode: insert
	Pseudocode: deleteMin
	Example
	Other operations
	Evaluating the Array Implementation…
	So why O(1) average-case insert?
	Aside: Insert run-time:  Take 2
	Building a Heap
	Floyd’s buildHeap Method
	Thinking about buildHeap
	Floyd’s buildHeap Method
	buildHeap Example
	buildHeap Example
	buildHeap Example
	buildHeap Example
	buildHeap Example
	buildHeap Example
	buildHeap Example
	But is it right?
	Correctness
	Slide Number 28
	Efficiency
	Efficiency
	Lessons from buildHeap
	More heaps (see Weiss if curious)

