
1

CSE 332 Winter 2025 Midterm
Version A

Name: _____Sample Solution___________________

Email address (UWNetID): __________________________________

Instructions:

● The allotted time is 60 minutes.
● Please do not turn the page until the staff says to do so.
● This is a closed-book and closed-notes exam. You are NOT permitted to access electronic

devices including calculators.
● Read the directions carefully, especially for problems that require you to show work or provide an

explanation.
● When provided, write your answers in the box or on the line provided.
● Unless otherwise noted, every time we ask for an O, Ω, or Θ bound, it must be simplified and

tight.
● Unless otherwise noted, assume all data structures are implemented as described in lecture.

● For answers that involve bubbling in a or , make sure to fill in the shape completely.
● If you run out of room on a page, indicate where the answer continues. Try to avoid writing on the

very edges of the pages: we scan your exams and edges often get cropped off.
● A formula sheet has been included at the end of the exam.

Advice
● If you feel like you’re stuck on a problem, you may want to skip it and come back at the end if you

have time.
● Look at the question titles on the cover page to see if you want to start somewhere other than

problem 1.
● Relax and take a few deep breaths. You’ve got this! :-).

Question #/Topic/Points Page #
Q1: Short-answer questions (20 pts) 2
Q1: (continued) 3
Q2: Code Analysis (16 pts) 4
Q3: O, Ω, and Θ (9 pts) 6
Q4: Write a Recurrence (5 pts) 6
Q5: Tree Method (8 pts) 8
Q6: Heaps (11 pts) 10
Q7: AVL (12 pts) 11
Q7: (continued) 12

Total: 81 points

2

Q1: Short-answer questions (20 pts)
● Unless otherwise noted, assume all data structures are implemented as described in lecture.
● For questions asking you about runtime, give a simplified, tight Big-O bound. This means that, for

example, O(5n2 + 7n+ 3) (not simplified) or O(2n!) (not tight enough) are unlikely to get points.
Unless otherwise specified, all logs are base 2.

● For questions with a mathematical answer, you may leave you answer as an unsimplified formula
(e.g. 7 · 103).

We will only grade what is in the provided answer box.

a. Give the worst-case runtime for an inorder traversal of a binary search tree containing N
elements.

O(N)

b. Give a simplified, tight big-O bound for: T(N) = T(N-1) + 1, given T(1) = 1

O(N)

c. Give a simplified, tight big-O bound for:

 f(N) = N2 + log(N) + 2 log(N)

O(N2)

d. Give the worst-case runtime for creating a binary min heap out of an array containing N
elements.

O(N)

e. Give a simplified, tight big-O bound for:

f(N) = 2N log (N2) + N log (log (N))

O(Nlog(N))

3

Q1: (continued)
(Same instructions as on previous page)

f. Give the worst-case runtime for finding an element in an AVL tree containing N elements.

=

O(log(N))

g.Give the worst-case runtime for inserting a value that is smaller than all the elements
currently present into a binary max heap containing N elements. Assume that there is enough
space in the array for the insertion.

O(1)

h. Give the worst-case runtime for pushing N2 items onto a stack implemented using linked list
nodes.

O(N2)

i. Give the minimum number of elements in a binary min heap of height 5.
(Remember: A single node is a tree of height 0.)

 32

j. Give the smallest value for c that could be used with in a proof to show that: 𝑛

0
= 1

 is O() 2𝑛3 + 4 𝑛3

 Given 𝑛

0
= 1

c = 6

4

Q2: Code Analysis (16 pts)
Describe the worst-case running time for the following pseudocode functions in Big-O notation in terms of the
variable n. Your answer MUST be tight and simplified. You do not have to show work or justify your
answers for this problem.

a) void sunny(int n) {
 int count = 0;

for (int i = 1; i < n; i++) {
 for (int j = 1; j < n*n; j+= n) {
 count++;
 }
 for (int k = 1; k < n*n*n; k = 2*k) {
 count++;
 }

}
 }

O(n2)

b) public static void snowy(int n) {
 MyQueue<Integer> q = new LinkedQueue<>();
 q.enqueue(n);
 while (!q.isEmpty()) {
 int val = q.dequeue();
 if (val > 1) {
 q.enqueue(val / 2);
 q.enqueue(val / 2);
 }
 }
 }

O(n)

5

Q2: (continued)

c)int swim(int n) {
 int bar = 0;
 for (int i = 0; i < n; i += 2) {
 if (i % 2 == 1) {
 for (int j = 0; j < n * n * n; j++) {
 bar++;
 }
 } else {
 for (int j = 0; j < i; j++) {
 bar++;
 }
 }
 }
 return bar;
}

O(n2)

d) int ski(int n) {
 for (int i = 0; i < n * n; i++) {
 if (i % 10 == 0) {
 for (int j = 0; j < i; j++) {
 sum++;
 }
 }

}
return sum;

 }

O(n4)

6

Q3: O, Ω, and Θ (9 pts)
For each of the following statements, indicate whether it is always true, sometimes true, or never true. You do
not need to include an explanation. Assume that the domain and codomain of all functions in this problem are
natural numbers(1, 2, 3 ...).

a) A function that is O(n) is ________ O(n2).

 Always Never Sometimes

b) A function that is 𝚯(n) is ________ O(n2)

 Always Never Sometimes

c) A function that is O(n) is ________ O(log n).

 Always Never Sometimes

d) A function that is O(n) is ________ 𝚯(n2)

 Always Never Sometimes

e) A function that is Ω(log(n1/log n)) is ________ Ω(n2/3).

 Always Never Sometimes

f) A function that is Ω(log n) is ________ Ω(n)

 Always Never Sometimes

g) A function that is O(n) is ________ Ω(n2).

 Always Never Sometimes

h) If f(n) is 𝚯(g(n)) and g(n) is Ω(h(n)), then f(n) is Ω(h(n)).

 Always Never Sometimes

i) If f(n) is both O(g(n)) and Ω(h(n)), then g(n) is 𝚯(h(n)).

 Always Never Sometimes

7

Q4: Write a Recurrence (5 pts)

Give a base case and a recurrence for the runtime of the following function. Use variables
appropriately for constants (e.g. c1, c2, etc.) in your recurrence (you do not need to attempt to count
the exact number of operations). YOU DO NOT NEED TO SOLVE this recurrence.

public static int fun(int n) {

 if (n < 5) {

 return n;

 } else if (fun(n / 2) < 10) {

 int a = fun(n - 3);

 int b = fun(n / 2);

 return b;

 } else {

 int j = fun(n - 7);

 for (int i = 0; i < n * n; i += 4) {

 j += i;

 }

 return j;

 }

}

 _____________ ____________________ For 𝑇 𝑛() = 𝑐
0

𝑛 < 5

 __ __ For 𝑇 𝑛() = 2𝑇(𝑛/2) + 𝑇(𝑛 − 3) + 𝑐
1

𝑛 > 5

Yipee!!!! YOU DO NOT NEED TO SOLVE this recurrence…

Note that the function always returns a value that is less than 5.

(by induction)
Base case: Clearly true for n < 5.
IH: fun(i) < 5 for all i < k
Inductive step: show fun(k) < 5.
The else-if branch calculates fun(k/2), which is less than 5 because k/2 < k implies fun(k/2) < 5.
Thus fun(k) enters this branch and returns b = fun(k/2) < 5, so fun(k) < 5.
By induction, fun(k) < 5 for all n.

8

Q5: Tree Method (8 pts)

Suppose that the running time of an algorithm is expressed by the recurrence relation:

 𝑇 1() = 1

 𝑇(𝑁) = 2𝑇(𝑁
3) + 𝑁2

 for integers N > 1

For the following questions, use the tree method to solve the recurrence relation. We have
broken up the process into subquestions to guide you through your answer. You may assume
that N is always a power of 3. Be sure to include bases in logs in your answers if any.

a) Sketch the tree in the space below. Include at least the first 3 levels of the tree (i.e.
the root, its children, and its grandchildren), make clear what the input size is for
each recursive call as well as the work per call.

9

b) Indicate exactly the total amount of work done at level i of the tree (define the root to
be level 0). Include all constants and non-dominant terms.

N2 × (2/9)i

c) Indicate the level of the tree in which the base cases occur.

 log3(N)
d) Give a simplified Θ bound on the solution. When simplified, n should not appear in

any exponents.

Θ(N2)

10

Q6: Heaps (11 pts)
.
Here’s an array presentation of a 0-indexed binary heap:

23 25 55 81 49 64 79 98 95 70 68

a) (1 pt) This is a ___min____ (choose one: max/min) heap.
b) (2 pts) Draw the visual representation of the given heap.

c) (2 pts each) For each statement below, if there’s an insertion that can achieve the goal, list
the element to insert; otherwise, justify why it cannot be achieved (1-2 sentences max). Each
statement is independent; you are allowed to insert one element for each statement.

i) 70 is a child of 64

Insert(70)

ii) 79 is no longer a child of 55

Insert any number < 55

iii) 49 only has one child

Impossible. 49 already has two children, and we are performing only one insertion,
which will add a child to 64. This will not impact 49. (Mentioning maintaining the heap
property is also correct.etc)

iv) No percolation is done for the insertion

Insert any number >= 64

11

Q7: AVL (12 pts)
a) (3 pts) Draw the AVL tree that results after inserting 5 into this AVL tree. Be sure to draw your final
tree in the box below AND indicate the total number of single and double rotations required for
this insertion.
b) (1 pts) This insertion required: (SELECT ONE)

 One single rotation

 One double rotation

 One single rotation AND One double rotation

 More than one single rotation and one double rotation

Intermediate Tree:

Final Tree:

12

Q7: (continued)

Jolie discovered that today is National Cream Cheese Brownie day and wants to organize 21 brownie
recipes (numbered 1, 2, 3, …, 20, 21) in an AVL tree. (Remember: A single node is a tree of height 0.)

c) (2 pts) What is the minimum height of the tree? _________4________

d) (2 pts) What is the minimum number of recipes would we need to remove
 (not which ones) to decrease the minimum height of the tree? _________6______

e) (2 pts) How many more recipes would we need to add to
increase the minimum height of the tree? ________11_______

f) (2 pts) How many more recipes would we need to add to
increase the maximum height of the tree? ________12_______

It helps to first calculate the min and max number of nodes needed for a tree of each height:

height 0 1 2 3 4 5 6

Min # 1 2 4 7 12 20 33

Max # 1 3 7 15 31 63 127

13

Logs:

14

This is a blank page! Enjoy!

	CSE 332 Winter 2025 Midterm
	Q1: Short-answer questions (20 pts)
	
	Q1: (continued)
	Q2: Code Analysis (16 pts)
	Q3: O, Ω, and Θ (9 pts)
	

	Q4: Write a Recurrence (5 pts)
	Q5: Tree Method (8 pts)
	Q6: Heaps (11 pts)
	Q7: AVL (12 pts)
	Q7: (continued)

