
‭1‬

‭CSE 332 Winter 2025 Final Exam‬

‭Your‬
‭Seat Number: _______________‬

‭Name: _____________________________________‬

‭UW NetID: _________________________(@uw.edu)‬

‭Instructions:‬
‭●‬ ‭The allotted time is 1 hour and 50 minutes.‬
‭●‬ ‭Please do not turn the page until the staff says to do so.‬
‭●‬ ‭This is a closed-book and closed-notes exam. You are NOT permitted to access electronic‬

‭devices including calculators.‬
‭●‬ ‭Read the directions carefully, especially for problems that require you to show work or provide an‬

‭explanation.‬
‭●‬ ‭When provided, write your answers in the box or on the line provided.‬
‭●‬ ‭Unless otherwise noted, every time we ask for an O, Ω, or Θ bound, it must be simplified and‬

‭tight.‬

‭●‬ ‭For answers that involve bubbling in a‬ ‭or‬ ‭, make‬‭sure to fill in the shape completely.‬
‭●‬ ‭If you run out of room on a page, indicate where the answer continues. Try to avoid writing on the‬

‭very edges of the pages: we scan your exams and edges often get cropped off.‬
‭●‬ ‭A formula sheet has been included at the end of the exam.‬

‭Advice:‬
‭●‬ ‭If you feel like you’re stuck on a problem, you may want to skip it and come back at the end if you‬

‭have time.‬
‭●‬ ‭Look at the question titles on the cover page to see if you want to start somewhere other than‬

‭problem 1.‬
‭●‬ ‭Relax and take a few deep breaths. You’ve got this! :-).‬

‭Question #/Topic/Points‬ ‭Page #‬
‭Q1: Short-answer questions (10 pts)‬ ‭2‬
‭Q2: More Short-answer questions (10 pts)‬ ‭3‬
‭Q3: Hashing (8 pts)‬ ‭4‬
‭Q4: Graphs (16 pts)‬ ‭5‬
‭Q5: ForkJoin (14 pts)‬ ‭8‬
‭Q6: Concurrency (12 pts)‬ ‭10‬
‭Q7: Parallel Prefix (9 pts)‬ ‭12‬
‭Q8: Sorting (8 pts)‬ ‭13‬
‭Q9: Pre-Midterm Medley (6 pts):‬ ‭15‬

‭Total: 93 points‬

‭2‬
‭Q1: Short-answer questions (10 pts)‬

‭●‬ ‭For questions asking you about runtime, give a simplified, tight Big-O bound. This means that, for‬
‭example, O(5n‬‭2‬ ‭+ 7n+ 3) (not simplified) or O(2‬‭n!‬‭)‬‭(not tight enough) are unlikely to get points.‬
‭Unless otherwise specified, all logs are base 2.‬

‭We will only grade what is in the provided answer box.‬

‭a.‬‭True‬‭or‬‭False‬‭: If the best case runtime of a program‬‭is‬ ‭, then the worst case‬Ω(‭𝑙𝑜𝑔‬‭ ‬‭𝑁‬)
‭runtime is‬ ‭.‬Ω(‭𝑙𝑜𝑔‬‭ ‬‭𝑁‬)

‭True‬ ‭False‬

‭b.‬‭Give a simplified, tight big-O bound for: T(N)‬‭= 2*T(N/2) + 1, given T(1) = 1‬

‭O(‬ ‭)‬
‭c.‬ ‭True‬‭or‬‭False‬‭: Suppose‬‭arr‬‭is a zero-indexed binary‬‭min heap of size N. If i, j < N are‬
‭non-negative integers, such that j = 4 * i + 3, then‬‭arr[i] <= arr[j]‬‭.‬

‭True‬ ‭False‬

‭d.‬‭Give the‬‭worst case‬‭runtime to determine that a‬‭key does NOT exist in an AVL tree‬
‭containing N keys.‬

‭O(‬ ‭)‬
‭e.‬‭What is the maximum number of nodes in a binary‬‭search tree with height 7? (Remember: A‬
‭single node is a tree of height 0.)‬‭Note: we are looking‬‭for the exact number here.‬‭For this‬
‭question partial credit will‬‭not‬‭be given for formulas‬‭or anything other than the actual number -‬
‭check your work!‬

‭Q2: More Short-answer questions (10 pts)‬
‭(Same instructions as for Q1)‬

‭a.‬‭Give the exact number for the minimum number of‬‭edges in a complete undirected graph‬
‭without self-loops containing‬‭7 vertices‬‭.‬‭Note: we‬‭are looking for the exact number here.‬‭For‬
‭this question partial credit will‬‭not‬‭be given for‬‭formulas or anything other than the actual‬
‭number - check your work!‬

‭b‬‭. True‬‭or‬‭False‬‭: In Java fork-join programming,‬‭if some data is thread-local, there can never‬
‭be a data race on that data.‬

‭True‬ ‭False‬

‭c. What is the‬‭best case‬‭runtime of selection sort‬‭of an array of N unique elements (no‬
‭duplicates).‬

‭O(‬ ‭)‬
‭d.‬‭What is the‬‭worst case‬‭runtime of a delete operation‬‭on a hash table containing N elements,‬
‭using separate chaining, where each bucket is a sorted linked list. Assume the element is‬
‭present in the hash table. The load factor of this table is 6.‬

‭O(‬ ‭)‬

‭e. What fraction of a program must be parallelizable in order to get‬‭3x‬‭speedup on‬‭6‬
‭processors? Give your answer as a fraction.‬

‭4‬
‭Q3: Hashing (8 pts)‬
‭a) [3 pts]‬ ‭Quadratic Probing‬‭Hashtable‬‭. Insert‬‭1,‬‭5, 11, 25, 40, 50, 21, 37‬‭into the table below. TableSize‬‭=‬
‭10‬‭, and you should use the primary hash function h(k)‬‭= k%10. If an item cannot be inserted into the table,‬
‭please indicate this and continue inserting the remaining values. Assume no re-sizing occurs during these‬
‭insertions.‬

‭If any values cannot be inserted, write them here:_______________‬

‭0‬

‭1‬

‭2‬

‭3‬

‭4‬

‭5‬

‭6‬

‭7‬

‭8‬

‭9‬

‭b) [1 pt] What is the load factor for the table in part a)? __________________‬

‭c) [2 pt] After completing the insertions above, if you use the method described in lecture to delete 1 from the‬
‭hash table, what would be the index of 11 after deleting 1?‬

‭Index of 11:__________________‬
‭Briefly describe how 1 would be deleted using the method described in lecture (1-2 sentences):‬

‭d) [2 pts] Jacklyn is implementing a hash table with Double Hashing. She decided to choose the secondary‬
‭hash function to be identical to the primary hash function. When using her hash table she encountered an‬
‭infinite loop on the second insertion to the hash table.‬‭In 2-3 sentences, explain why she might be‬‭getting an‬
‭infinite loop on the second insertion?‬

‭5‬
‭Q4: Graphs (16 pts)‬

‭Use the following graph for the problems on this page:‬

‭a) [4 pts] Step through Dijkstra’s Algorithm to calculate the‬‭single source shortest path from s‬‭to every‬
‭other vertex. Break ties by choosing the lexicographically smallest letter first; ex. if b and c were tied, you‬
‭would explore b first.‬‭Note that the next question‬‭asks you to recall what order vertices were declared‬
‭known‬‭.‬‭Make sure the‬‭final‬‭distance and predecessor‬‭are clear in the table below.‬

‭Vertex‬ ‭Known‬ ‭Distance‬ ‭Predecessor‬

‭s‬ ‭------‬

‭a‬

‭b‬

‭c‬

‭d‬

‭e‬

‭f‬

‭b) [1 pt] In what order would Dijkstra’s algorithm mark each node as‬‭known‬‭?‬

‭______, ______, ______, ______, ______, ______, ______‬

‭c) [1 pt] List the‬‭shortest path‬‭from s to d. (Give‬‭the actual path‬‭NOT‬‭the cost.)‬

‭6‬
‭Q4 continued: (Copy of graph from previous page)‬

‭d) [2 pts] List a valid‬‭topological ordering‬‭of the‬‭nodes in the graph above. If there are no valid orderings,‬
‭state why not.‬

‭______, ______, ______, ______, ______, ______, ______‬

‭e) [2 pts] Is this graph‬‭strongly connected‬‭?‬‭Explain‬‭your answer in 1-2 sentences for any credit.‬

‭Yes‬ ‭No‬

‭7‬
‭Q4 continued: Use the following graph for the problems on this page:‬

‭f) [2 pts] If we run Kruskal's algorithm, which of the following edges could be‬‭the last edge added‬‭to the‬
‭Minimum Spanning Tree?‬‭Bubble in the box for all that‬‭apply.‬ ‭Assume any ties are broken randomly.‬

‭AB‬ ‭AC‬ ‭AD‬ ‭BD‬ ‭BE‬ ‭CD‬

‭CF‬ ‭DE‬ ‭DF‬ ‭DG‬ ‭EG‬ ‭FG‬

‭g) [2 pt] What is the‬‭total cost‬‭of a minimum spanning‬‭tree in the graph above?‬

‭h) [2 pts] ASSUMING the edges above are‬‭unweighted‬‭,‬‭give a valid‬‭breadth first search‬‭of this graph,‬
‭starting at vertex F‬‭, using the algorithm described‬‭in lecture.‬‭When adding elements to the data structure,‬
‭you should break ties by choosing the lexicographically smallest letter first‬‭; ex. if A and B were tied,‬‭you‬
‭would add A to the data structure first. You only need to show the final breadth first search.‬

‭____, ____, ____, ____, ____, ____, ____‬

‭8‬

‭Q5: ForkJoin (14 pts)‬
‭In Java using the ForkJoin Framework, write code to solve the following problem:‬

‭●‬ ‭Input‬‭: An array of non-empty lowercase Strings.‬
‭●‬ ‭Output‬‭: Returns a‬‭Pair‬‭of a) the total number of Strings‬‭that begin with the letter 'z' b) the length of‬

‭the longest String starting with the letter 'z'. If no words start with 'z', the length should be zero.‬

‭For example, Input array: {"zoo", "zebra", "hope", "a", "zipper"} returns (3, 6) and Input array: {"zany", "is", "the",‬
‭"zest"} returns (2, 4). Java's‬ ‭charAt(int i)‬‭method‬‭for Strings returns the i-th character in a String.‬

‭●‬ ‭**Do‬‭not‬‭employ a sequential cut-off:‬‭the base case‬‭should process one element‬‭.**‬
‭○‬ ‭i.e. you do not‬‭need‬‭to employ a sequential method‬‭and you can assume that the code will‬

‭never process more than one element‬
‭●‬ ‭Give a class definition,‬‭FindzTask‬‭, along with any‬‭other code or classes needed.‬
‭●‬ ‭Fill in the __________________________ in the function‬‭findzWords‬‭below.‬

‭*‬‭You may‬‭NOT‬‭use any‬‭global data structures‬‭or‬‭synchronization‬‭primitives (locks).‬
‭*Make sure your code has O(log n) span and O(n) work.‬

‭import java.util.concurrent.ForkJoinPool;‬
‭import java.util.concurrent.RecursiveTask;‬
‭import java.util.concurrent.RecursiveAction;‬

‭public class Pair { // You should use this class‬
‭int count, len;‬
‭public Pair (int count, int len) {‬

‭this.count = count;‬
‭this.len = len;‬

‭}‬
‭}‬

‭public class Main {‬
‭public static final ForkJoinPool fjPool = new ForkJoinPool();‬

‭// Returns the number of Strings that start with z & length of longest z word.‬
‭public static Pair findzWords(String[] input) {‬

‭return fjPool.invoke(new FindzTask(__________________________________)‬
‭}‬

‭}‬

‭Please fill in the function above and write your class on the next page.‬

‭****Don't forget to fill in the blank line above!!!!‬

‭9‬
‭Write your class here:‬
‭public class FindzTask extends __________________________ {‬

‭// Fields go here‬

‭public FindzTask(__) {‬

‭}‬
‭public _____________compute() {‬

‭10‬
‭Q6: Concurrency (12 pts)‬
‭The‬‭SelfDrivingCar‬‭class manages the charge and location‬‭of a self-driving car. Multiple threads might be‬
‭accessing the same‬‭SelfDrivingCar‬‭object. Code for‬‭the entire class shown below.‬

‭public class SelfDrivingCar {‬
‭private String curLoc = "home";‬
‭private String nextDest = "work";‬
‭private int chargeLevel = 100;‬

‭public boolean isCharged() {‬

‭return chargeLevel >= 5;‬

‭}‬

‭public void addCharge(int charge) {‬

‭chargeLevel += charge;‬

‭}‬

‭public void setDest(String newDest) {‬

‭nextDest = newDest;‬

‭}‬
‭}‬
‭a) [3 pts]Does the‬‭SelfDrivingCar‬‭class above have‬‭(bubble in all that apply):‬

‭a race condition‬ ‭potential for deadlock‬ ‭a data‬‭race‬ ‭none of these‬

‭Give an explanation for each box you checked above (1-2 sentences each). Refer to line numbers in your‬
‭explanation.‬‭Be specific!‬

‭1‬

‭2‬

‭3‬

‭4‬

‭5‬

‭6‬

‭7‬

‭8‬

‭9‬

‭10‬

‭11‬

‭12‬

‭13‬

‭14‬

‭15‬

‭16‬

‭17‬

‭18‬

‭19‬

‭20‬

‭21‬

‭22‬

‭23‬

‭24‬

‭25‬

‭26‬

‭11‬

‭b) [3 pts] We now add this method to the‬‭SelfDrivingCar‬‭class:‬

‭public boolean driveToDest() {‬

‭if (!isCharged() || curLoc == nextDest) {‬

‭return false;‬

‭}‬

‭curLoc = nextDest;‬

‭chargeLevel = chargeLevel - 5;‬

‭System.out.println("Driving to:" + nextDest + " Charge:" + chargeLevel);‬

‭return true;‬

‭}‬
‭Does adding this method to the‬‭SelfDrivingCar‬‭class‬‭cause any new‬‭(bubble in all that apply):‬

‭a race condition‬ ‭potential for deadlock‬ ‭a data‬‭race‬ ‭none of these‬

‭If there are any new problems, give an explanation for each box you checked above (1-2 sentences each).‬
‭Refer to line numbers in your explanation.‬‭Be specific!‬

‭c) [6 pts] Modify the‬‭code above in part b) and on‬‭the previous page‬‭(draw arrows if needed) to‬‭allow‬‭the‬
‭most concurrent access‬‭and to avoid all of the potential‬‭problems listed above.‬‭For full credit you must‬
‭allow the most concurrent access possible without introducing any errors or extra locks.‬‭Create locks‬‭as‬
‭needed. Use any reasonable names for the locking methods you call.‬‭DO NOT use‬‭synchronized‬‭.‬‭You‬
‭should create re-entrant lock objects as follows:‬

‭ReentrantLock lock = new ReentrantLock();‬

‭27‬

‭28‬

‭29‬

‭30‬

‭31‬

‭32‬

‭33‬

‭34‬

‭35‬

‭36‬

‭37‬

‭38‬

‭39‬

‭40‬

‭41‬

‭42‬

‭43‬

‭12‬
‭Q7: Parallel Prefix (9 pts)‬
‭Given the following array and integer as inputs, perform the parallel prefix algorithm to fill the output‬
‭array with the‬‭count of times a number that is a multiple‬‭of the given integer (stored in the‬
‭variable‬‭mult‬‭) appears in all of the cells to the‬‭left‬‭in the‬‭input‬‭array (including the value‬
‭contained in that cell). Do not use a sequential cutoff.‬
‭For example, for‬‭input = {2, 12, 7, 3, 12, 5, -6,‬‭0}‬‭and‬ ‭mult = 3‬‭,‬

‭output‬‭should be:‬‭{0, 1, 1, 2, 3, 3, 4, 5}‬‭.‬

‭a) [5 pts] Fill in the values for‬‭count‬‭,‬‭fromLeft‬‭,‬‭and the‬‭output‬‭array in the picture below given‬
‭the following values for‬‭input‬‭and‬ ‭mult‬‭. The‬‭input‬‭array has already been filled out for you.‬
‭Note that problems b-e, on the next page, ask you to give the formulas you used in your calculation‬

‭int[] input = {3, 8, 2, 6, 100, 4, 17, 4}‬
‭int mult = 4‬

‭13‬

‭Give formulas for the following values where‬‭p‬‭is‬‭a reference to a non-leaf tree node and‬
‭leaves[i]‬‭refers to the leaf node in the tree visible‬‭just above the corresponding location in the‬
‭input‬‭and‬‭output‬‭arrays in the picture on the previous‬‭page.‬

‭b) [1 pt] Give pseudocode for how you assigned a value to‬‭leaves[i].count‬

‭c) [1 pt] Give code for assigning‬‭p.left.fromleft.‬

‭p.left.fromleft =‬

‭d) [1 pt] Give code for assigning‬‭p.right.fromleft.‬

‭p.right.fromleft =‬

‭e) [1 pt] How is‬‭output[i]‬‭computed? Give‬‭exact code‬‭assuming‬ ‭leaves[i]‬‭refers to the‬
‭leaf node in the tree visible just above the corresponding location in the‬‭input‬‭and‬‭output‬
‭arrays in the picture above.‬

‭output[i] =‬

‭14‬

‭Q8: Sorting (8 pts)‬
‭.‬

‭a)‬ ‭[2 pt] We are given an array of size N. Suppose that we are running quicksort on that array and we‬
‭are choosing the pivot by always choosing the‬‭maximum‬‭value‬‭from the elements we are‬
‭currently partitioning. How many times do we partition the elements? We do not partition on an‬
‭input size of 1.‬

‭O(‬ ‭)‬

‭b)‬ ‭[2 pt] True or False: Radix sort is a‬‭stable‬‭sort.‬

‭True‬ ‭False‬
‭Explain why or why not in 1-2 sentences.‬

‭c)‬ ‭[2 pts] Give the‬‭recurrence‬‭for Mergesort -‬‭worst‬‭case‬‭.‬

‭T(n) =‬

‭d)‬ ‭[2 pts] In class we discussed a bound on comparison based sorting. What is that bound?‬

‭i) Which kind of bound:‬

‭𝛩‬ Ω ‭𝑂‬
‭ii) What is the bound?‬

‭1‬
‭5‬

‭Q9: Pre-Midterm Medley (6 pts):‬

‭a)‬ ‭[3 pts] Give a base case and a recurrence for the runtime of the following function. Use‬
‭variables appropriately for constants (e.g. c‬‭1‬‭, c‬‭2‬‭,‬‭etc.) in your recurrence (you do not‬
‭need to attempt to count the exact number of operations).‬‭YOU DO NOT NEED TO‬
‭SOLVE‬‭this recurrence.‬

‭int‬‭sun(‬‭int‬‭n) {‬
‭if‬‭(n <‬‭2‬‭) {‬

‭return‬‭n;‬
‭}‬‭else‬‭{‬

‭for (int i = n; i > 0; i--) {‬
‭print i;‬

‭}‬
‭return‬‭sun(n / 2) + sun(n / 3);‬

‭}‬
‭}‬

‭__‬‭For‬‭𝑇‬ ‭𝑛‬() = ‭𝑛‬ < ‭2‬

‭__‬‭For‬‭𝑇‬ ‭𝑛‬() = ‭𝑛‬‭ ‬‭ ‬‭≥‬‭ ‬‭ ‬‭2‬

‭Yipee!!!!‬ ‭YOU DO‬‭NOT‬‭NEED TO SOLVE‬‭this‬‭recurrence…‬

‭b)‬ ‭[3 pts]‬‭Describe the worst-case running time for the‬‭following pseudocode function in Big-O‬
‭notation in terms of the variable n. Your answer‬‭MUST‬‭be tight and simplified.‬‭You do not have‬
‭to show work or justify your answers for this problem.‬

‭int fun(int n) {‬
‭int count = 0;‬
‭for (int k = n; k > 0; k = k/2) {‬

‭for (int j = n; j > 0; j--) {‬
‭count++;‬

‭}‬
‭}‬
‭return count‬

‭}‬

‭O(‬ ‭)‬

‭16‬
‭This is a blank page! Enjoy!‬

