
CSE 332: Data Structures and Parallelism

Section 5: Hashing & Sorting

0. Sorting Hat
Suppose we sort an array of numbers, but it turns out every element of the array is the
same, e.g.,{17, 17, 17, ..., 17}. (So, in hindsight, the sorting is useless.)

a) What is the asymptotic running time of insertion sort in this case?
O(n) - This is the best case runtime of insertion sort as it only requires one pass through
the data. Insertion sort will traverse the array but since each element is not less than the
one before it, no extra computations are necessary.

b) What is the asymptotic running time of selection sort in this case?
O(n²) - Selection sort always has n² runtime, regardless of the nature of data

c) What is the asymptotic running time of merge sort in this case?
O(n∗log(n)) - Merge sort always has n∗log(n) runtime, regardless of the nature of data

d) What is the asymptotic running time of quick sort in this case?
O(n²) - This is the worst case runtime of quick sort. When partitioning, every element is
going to fall to the same side of the pivot since they all have the same value which
essentially only sorts 1 element per iteration of quicksort, leading to the n² runtime.

1. Another Sort of Sorting…
Given an array of integers as such: {11, 13, 55, 67, 79, 10, 8, 6, 4, 2}. Please answer
the following questions (assume all sorts to be done in ascending order):

a. What is the asymptotic running time of insertion sort for this array?
This takes the worst case runtime of O() because the array is not already in 𝑛2

sorted order.

b. What is the asymptotic running time of selection sort in this case?

O(n²) - Selection sort always has n² runtime, regardless of the nature of data

c. What is the asymptotic running time of merge sort in this case?

O(n∗log(n)) - Merge sort always has n∗log(n) runtime, regardless of the nature of
data

d. What is the asymptotic running time of quick sort in this case (assuming that
we choose the leftmost element as the pivot each time)?

O() 𝑛2

Case 1: upon choosing a good pivot (one that partitions the array into roughly
equal halves), one of the subarrays would be completely in reverse sorted order,

so it’s O(n) to sort one of the subarrays at each level, resulting in a O() 𝑛2

asymptotic running time.
Case 2: choosing a bad pivot (the smallest or largest element) each time would

result in the worst case runtime of O() as well. 𝑛2

Tries

1. Let’s give it a Trie!
For the Trie below, please perform the following operations.

(part a) (part b)

(for parts a and b, modify the trie above)

a. insert(“food”, 5)

a. delete(“foo”)

b. what does the call to find(“fry”) return?

returns 2

c. List all key-value pairs in the final trie.

(“food”, 5) (“fly”, 4) (“fry”, 2)

2. Let’s Trie to be Old School!
Text on nine keys (T9)’s objective is to make it easier to type text messages with 9 keys. It
allows words to be entered by a single keypress for each letter in which several letters are
associated with each key. It combines the groups of letters on each phone key with a
fast-access dictionary of words. It looks up in the dictionary all words corresponding to the
sequence of keypresses and orders them by frequency of use.
So for example, the input ‘1554’ could be the words book, cook, or cool. Describe how you
would implement a T9 dictionary for a mobile phone.

T9 example

Solution: There are multiple solutions to this problem. One such solution is to use a Trie,
where typed digits represent the path to the corresponding node, and nodes store a list
of all words ordered by frequency corresponding to the typed digits. ● To populate the
Trie, iterate through each word in the dictionary and convert it into the appropriate
sequence of digits. Traverse through the trie and add the word to the corresponding
node’s list. Then sort the list to maintain the ordering by frequency.

	0. Sorting Hat
	1. Another Sort of Sorting…
	Tries
	1. Let’s give it a Trie!
	2. Let’s Trie to be Old School!

