
Sorting
CSE 332

Slides by James Richie Sulaeman

Comparison-based
Sorting

Builds a sorted subarray at the front of the original
array. Takes the first element of the unsorted
subarray and inserts it into the sorted subarray.
● In-place and stable.
● Best-case runtime: O(n)
● Worst-case runtime: O(n2)

Insertion Sort

3 2 11 12
Original Input:

3 2 11 12
Step 1:

2 3 11 12
Step 2:

11 2 3 12
Step 3:

11 12 2 3Final output:

unsortedcurr elt

sorted

Builds a sorted subarray at the front of the original
array. Takes the smallest element of the unsorted
subarray and swaps it into the correct location at
the end of the sorted subarray.
● In-place and not usually stable

○ Can be made stable if you shift instead of
swapping and break ties by selecting the
left-most element (see image at right)

● Best-case runtime: O(n2)
● Worst-case runtime: O(n2)

Selection Sort

31 32 2 1Original Input:

1 31 32 2Step 1:

1 2 31 32
Step 2:

1 2 31 32
Step 3:

1 2 31 32
Final output:

sorted

unsorted

A stable version of
Selection Sort

Recursively splits an array into two halves, sorts
them, and then merges them back together to obtain
a sorted array.
● Not in-place but stable.
● Best-case runtime: O(n log n)
● Worst-case runtime: O(n log n)

Merge Sort
mergeSort(input) -> sorted input:
1. sortedLeft = mergeSort(left half of input)
2. sortedRight = mergeSort(right half of input)
3. return (merged ‘sortedLeft’ and ‘sortedRight’)

4 2 6 0

4 2

4

6 0

2 6 0

2 4 0 6

0 2 4 6

split
m

erge &
 sort

Recursively partitions an array based
on a pivot element, sorts the subarrays
on either side of the pivot, and merges
them back together to obtain a sorted
array.
● In-place but not stable.
● Best-case runtime: O(n log n)
● Worst-case runtime: O(n2)

Quick Sort
quickSort(input) -> void:
1. pick pivot
2. partition input into ‘lessThanPivot’ and
 ‘greaterThanPivot’ parts
3. quickSort(lessThanPivot)
4. quickSort(greaterThanPivot)

10 15 1 2 6 12 5 7

1 2 6 5 12 15 107

pivot

12 15101 2 5 6

1 2 12 15

7

5 10

2 15

≥ 7< 7

Problem 0

Sorting Algorithm Asymptotic Runtime Explanation

Insertion Sort O(n) Insertion Sort will traverse the array, but since it is already ‘sorted’, no extra
computation is necessary.

Selection Sort O(n2) Selection Sort always has O(n2) runtime since it has to find the smallest item
in the unsorted subarray n times.

Merge Sort O(n log n) Merge Sort always has O(n log n) runtime. You can prove this using
recurrences!

Quick Sort O(n2) This is the worst case for Quick Sort. Since all the elements are the same, all
items will end up on the same side of each partition.

Suppose we sort an array of numbers, but it turns out every element of the array is the
same (e.g. [17, 17, 17, ..., 17]).

What is the asymptotic runtime of the following sorting algorithms?

Problem 0

Suppose we sort an array of numbers, but it turns out every element of the array is the
same (e.g. [17, 17, 17, ..., 17]).

What is the asymptotic runtime of the following sorting algorithms?

Problem 0

Sorting Algorithm Asymptotic Runtime Explanation

Insertion Sort O(n) Insertion Sort will traverse the array, but since it is already ‘sorted’, no extra
computation is necessary

Selection Sort O(n2) Selection Sort always has O(n2) runtime since it has to find the smallest item
in the unsorted subarray n times

Merge Sort O(n log n) Merge Sort always has O(n log n) runtime. You can prove this using
recurrences!

Quick Sort O(n2) This is the worst case for Quick Sort. Since all the elements are the same, all
items will end up on the same side of each partition.

Problem 1

Sorting Algorithm Asymptotic Runtime Explanation

Insertion Sort O(n2) The array is not already sorted. At least half of the elements need to iterate
through half of the array. So this follow the running time of a worst case.

Selection Sort O(n2) Selection Sort always has O(n2) runtime, regardless of the nature of data

Merge Sort O(n*log(n)) Merge Sort always has O(n log n) runtime, regardless of the nature of data

Quick Sort O(n2) After finish the sort of first pivot (11), we end up sort the left subarray in a
worst case running time ({10, 8, 6, 4, 2} {11} {13 55 67 79})

Given an array of integers as such: {11, 13, 55, 67, 79, 10, 8, 6, 4, 2}. Please answer the
following questions (assume all sorts to be done in ascending order):
What is the asymptotic runtime of the following sorting algorithms?

Problem 1

(assuming that we choose the leftmost element as the pivot each time for quick sort)

Sorting Algorithm Asymptotic Runtime Explanation

Insertion Sort O(n2) The array is not already sorted. At least half of the elements need to iterate
through half of the array. So this follow the running time of a worst case.

Selection Sort O(n2) Selection Sort always has O(n2) runtime, regardless of the nature of data

Merge Sort O(n*log(n)) Merge Sort always has O(n log n) runtime, regardless of the nature of data

Quick Sort O(n2) After finish the sort of first pivot (11), we end up sort the left subarray in a
worst case running time ({10, 8, 6, 4, 2} {11} {13 55 67 79})

Given an array of integers as such: {11, 13, 55, 67, 79, 10, 8, 6, 4, 2}. Please answer the
following questions (assume all sorts to be done in ascending order):
What is the asymptotic runtime of the following sorting algorithms?

Problem 1

(assuming that we choose the leftmost element as the pivot each time for quick sort)

Non-Comparison Sorting

Distributes elements into their corresponding
buckets. Buckets have an inherent ordering and
are merged together in this ordering to produce
the sorted array.
● Not in-place but stable.
● Runtime: O(n + B)

○ Need to iterate over n elements
and B buckets.

○ Good when B « n or B ≈ n.
○ Bad when B » n.

Bucket Sort

Original Input:
[51, 11, 31, 41, 32, 2, 12, 13, 52, 42,
53]

Final output:
[11, 12, 13, 2, 31, 32, 41, 42, 51, 52,
53]

bucketSort(input) -> sorted input:
1. create array of size B
2. put each element into their corresponding bucket
3. generate sorted array by iterating through the
 buckets in order

Bucket Array

1 11, 12, 13

2 2

3 31, 32

4 41, 42

5 51, 52, 53

B: 5

Repeatedly runs bucket sort on the elements for each significant digit, from least
significant to most significant.

Radix Sort
radixSort(input) -> sorted input:
1. create array of size b
2. for each significant digit:
 3. run bucket sort on the elements using their
 corresponding significant digit values

0 1 2 3 4 5 6 7 8 9

Original Input: [478, 537, 9, 721, 3, 38, 143, 67] b: 10

Bucket Sort on 1’s Digit

0 1 2 3 4 5 6 7 8 9

Bucket Sort on 10’s Digit

721 3, 143 537, 67 478, 38 9

7213 143537 67 478537, 383, 9

Repeatedly runs bucket sort on the elements for each significant digit, from least
significant to most significant.

Radix Sort
radixSort(input) -> sorted input:
1. create array of size b
2. for each significant digit:
 3. run bucket sort on the elements using their
 corresponding significant digit values

Original Input: [478, 537, 9, 721, 3, 38, 143, 67] b: 10

0 1 2 3 4 5 6 7 8 9

Bucket Sort on 10’s Digit

7213 143537 67 478537, 383, 9

● Notice how elements are now sorted with respect to their last two digits.
● By running bucket sort from the least to the most significant digit, the order of the

more significant digits take precedence over the less significant digits.

Repeatedly runs bucket sort on the elements for each significant digit, from least
significant to most significant.

Radix Sort
radixSort(input) -> sorted input:
1. create array of size b
2. for each significant digit:
 3. run bucket sort on the elements using their
 corresponding significant digit values

Original Input: [478, 537, 9, 721, 3, 38, 143, 67] b: 10

Bucket Sort on 10’s Digit

0 1 2 3 4 5 6 7 8 9

Bucket Sort on 100’s Digit

33, 9 7215373, 9,
38

0 1 2 3 4 5 6 7 8 9

7213 143537 67 478537, 383, 9

1433, 9,
38, 67

478

Repeatedly runs bucket sort on the elements for each significant digit, from least
significant to most significant.

Radix Sort
radixSort(input) -> sorted input:
1. create array of size b
2. for each significant digit:
 3. run bucket sort on the elements using their
 corresponding significant digit values

Original Input: [478, 537, 9, 721, 3, 38, 143, 67] b: 10

0 1 2 3 4 5 6 7 8 9

Bucket Sort on 100’s Digit

33, 9 7215373, 9,
38

1433, 9,
38, 67

478

Output: [3, 9, 38, 67, 143, 478, 537, 721]

● Not in-place but stable.
● Runtime: O(p(n + b))

○ Bucket sort has O(n + b) runtime, and we’re running it p = logb(max(n)) times.

Thank You!

