
1) 10 Points

Compute an appropriately tight O (big-O) bound on the running time of each code
fragment, in terms of n. Assume integerarithmetic. Circle your answer for each fragment.

a) for(i = 0; i < n; i++) {
for(j = 0; j < n; j++) { . \

for(k = 0; k < i * jj, k++) { Cl(*

}

}

sum++; ^—j— v fl~
}

b) for(i - 1; i < n; i - i * 2) { 'o^ *-
for(j = 1; j < i; j++) { ^

sum++; o[n loa 0

c) ford = 0; i < n; i++) { i\
myArray = new array[i]; r £

0(n io$for(j = 0; j < i; j++) { fl
myArray[j] = random();

> i
mergeSort (myArray) ; l\. iQa «t

}

loa A.)

d) for(i =0; i < n; i++) { A
tree = new UnbalancedBinarySearchTree () ; /" -^'
for(j = 0; j < n; j++) {f\ Of A ,

tree, insert (j); /\^ V '

i "Itsi-" +"» reiufc

e) tree = new AVLTreeO;
ford = 0; i < n; i++) { A

for(j = 0; j < n; j++) { A
tree, insert (random ()) ; w (_ A lOCA r\.

}
} A

Unique ID: «Unique_ID»

Oln* la,

6

Q3: O, Ω, and Θ (9 pts)
For each of the following statements, indicate whether it is always true, sometimes true, or never true. You do
not need to include an explanation. Assume that the domain and codomain of all functions in this problem are
natural numbers(1, 2, 3 ...).

a) A function that is O(n) is ________ O(n2).

 Always Never Sometimes

b) A function that is 𝚯(n) is ________ O(n2)

 Always Never Sometimes

c) A function that is O(n) is ________ O(log n).

 Always Never Sometimes

d) A function that is O(n) is ________ 𝚯(n2)

 Always Never Sometimes

e) A function that is Ω(log(n1/log n)) is ________ Ω(n2/3).

 Always Never Sometimes

f) A function that is Ω(log n) is ________ Ω(n)

 Always Never Sometimes

g) A function that is O(n) is ________ Ω(n2).

 Always Never Sometimes

h) If f(n) is 𝚯(g(n)) and g(n) is Ω(h(n)), then f(n) is Ω(h(n)).

 Always Never Sometimes

i) If f(n) is both O(g(n)) and Ω(h(n)), then g(n) is 𝚯(h(n)).

 Always Never Sometimes

7

Q4: Write a Recurrence (5 pts)

Give a base case and a recurrence for the runtime of the following function. Use variables
appropriately for constants (e.g. c1, c2, etc.) in your recurrence (you do not need to attempt to count
the exact number of operations). YOU DO NOT NEED TO SOLVE this recurrence.

public static int fun(int n) {

 if (n < 5) {

 return n;

 } else if (fun(n / 2) < 10) {

 int a = fun(n - 3);

 int b = fun(n / 2);

 return b;

 } else {

 int j = fun(n - 7);

 for (int i = 0; i < n * n; i += 4) {

 j += i;

 }

 return j;

 }

}

 _____________ ____________________ For 𝑇 𝑛() = 𝑐
0

𝑛 < 5

 __ __ For 𝑇 𝑛() = 2𝑇(𝑛/2) + 𝑇(𝑛 − 3) + 𝑐
1

𝑛 > 5

Yipee!!!! YOU DO NOT NEED TO SOLVE this recurrence…

Note that the function always returns a value that is less than 5.

(by induction)
Base case: Clearly true for n < 5.
IH: fun(i) < 5 for all i < k
Inductive step: show fun(k) < 5.
The else-if branch calculates fun(k/2), which is less than 5 because k/2 < k implies fun(k/2) < 5.
Thus fun(k) enters this branch and returns b = fun(k/2) < 5, so fun(k) < 5.
By induction, fun(k) < 5 for all n.

10

Q6: Heaps (11 pts)
.
Here’s an array presentation of a 0-indexed binary heap:

23 25 55 81 49 64 79 98 95 70 68

a) (1 pt) This is a ___min____ (choose one: max/min) heap.
b) (2 pts) Draw the visual representation of the given heap.

c) (2 pts each) For each statement below, if there’s an insertion that can achieve the goal, list
the element to insert; otherwise, justify why it cannot be achieved (1-2 sentences max). Each
statement is independent; you are allowed to insert one element for each statement.

i) 70 is a child of 64

Insert(70)

ii) 79 is no longer a child of 55

Insert any number < 55

iii) 49 only has one child

Impossible. 49 already has two children, and we are performing only one insertion,
which will add a child to 64. This will not impact 49. (Mentioning maintaining the heap
property is also correct.etc)

iv) No percolation is done for the insertion

Insert any number >= 64

11

Q7: AVL (12 pts)
a) (3 pts) Draw the AVL tree that results after inserting 5 into this AVL tree. Be sure to draw your final
tree in the box below AND indicate the total number of single and double rotations required for
this insertion.
b) (1 pts) This insertion required: (SELECT ONE)

 One single rotation

 One double rotation

 One single rotation AND One double rotation

 More than one single rotation and one double rotation

Intermediate Tree:

Final Tree:

	CSE 332 Winter 2025 Midterm
	Q3: O, Ω, and Θ (9 pts)
	

	Q4: Write a Recurrence (5 pts)
	Q6: Heaps (11 pts)
	Q7: AVL (12 pts)

