
Recurrences
CSE 332 - Section 3

Recurrence Relations

Recurrence Relations

● Describes the time complexity of recursive algorithms, often uses T(n)

○ Same way that f(n) and g(n) described time complexity of non

recursive algorithms last week

● Generally in the form:

OR

“Divide & Conquer”

“Chip & Conquer”

Recurrence Relations

● n = input size

● T(n) = runtime for input size n

● b = how input shrinks for next recursive call(s) (reduction factor/ constant)

● a = number of recursive calls made per function call (branching factor)

foo(n) {

if (n <= 1) {

return 1;

}

return foo(n-1) + foo(n-1);

}

a = 2
b = 1

OR

bar(n) {

if (n <= 1) {

return 1;

}

return 2 * bar(n/2);

}

a = 1
b = 2

Problem 0a

1 f(n) {

2 if (n <= 0) {

3 return 1

4 }

5 return 2 * f(n - 1) + 1

6 }

Find a recurrence T(n) modelling the worst-case runtime complexity of f(n)

● When does the base case occur?

● What is the branching factor a?

● What is the reduction factor / b?

● What is the amount of non-recursive work f(n)?

n ≤ 0

?

a = 1 since we only make one recursive call

b = 1 since we always reduce input size by 1constantconstant

constant, which we can denote as c1

Recurrence relation forms:

●

Problem 0b

1 f(n) {

2 if (n <= 10000) {

3 return 1000

4 }

5 if (f(n/3) > 5) {

6 for (int i = 0; i < n; i++) {

7 println(“Yay”)

8 }

9 return 5 * f(n/3)

10 } else {

11 for (int i = 0; i < n * n; i++) {

12 println(“Yay)

13 }

14 return 4 * f(n/3)

15 }

16 }

Find a recurrence T(n) modelling the worst-case runtime complexity of f(n)

● When does the base case occur?

● What is the branching factor a?

● What is the reduction factor /b?

● What is the amount of non-recursive work f(n)?

n ≤ 10000

a = 2

b = 3

c1*n + c2

Recurrence relation forms:

●

Tree Method Overview

Big Idea: T(n/b)

… … … …

…c

Red box represents a

problem instance

Blue value represents

time spent at that level

of recursion

…

… …

Asymptotically, these never matter!

Big Idea: T(n - b)
Red box

represents a

problem instance

Blue value

represents time

spent at that level

of recursion

n f(n)

n - b n - b

n - 2b n - 2b n - 2b n - 2b

…
… … … …

x x x … xx

f(n-b)f(n-b)

f(n-2b) f(n-2b) f(n-2b)f(n-2b)

c c c c c

≈ n/b levels

Asymptotically, these never matter!

⇒ ai f(n - bi)

work per level

Q1(a) Tree Method Example

… … … …

…

Red box represents a

problem instance

Blue value represents

time spent at that level

of recursion

⇒ 2𝑖∗
𝑛

2𝑖
= 𝑛 work per level

(root is level 0)

Your Turn!
Try problems 1b-1f

Q1(b) Base Case Doesn’t Matter!

… … … …

…

Red box represents a

problem instance

Blue value represents

time spent at that level

of recursion

… …

⇒ 2𝑖∗
𝑛

2𝑖
= 𝑛 work per level

Q1(c) Constants for f(n) Don’t Matter!

… … … …

…

Red box represents a

problem instance

Blue value represents

time spent at that level

of recursion

… …

⇒ 2𝑖∗
100𝑛

2𝑖
= 100𝑛 work

per level

Q1(d) Branching Factor (a) Matters!
… … … …

…

Red box represents a

problem instance

Blue value represents

time spent at that level

of recursion

Solving the Summation

can move the n using the constant multiple rule

Geometric Series Sum Rule

simplification + props. of log & exponents:

multiplied by -2 and distributed our n

log rules:

Q1(e) Reduction Factor (/b) Does Matter!

… … … …

…

Red box represents a

problem instance

Blue value represents

time spent at that level

of recursion

… …

Solving the Summation

This is a geometric series with a ratio < 1, so it converges to a constant!

can move the n using the constant multiple rule

Q1(f): Tree method

n Work: 1

n-2 n-2

n-4 n-4 n-4 n-4

… … … …

1 1 1 … 11

11

1 1 1

1 1 1 1 1

≈ n/2 levels

⇒ 2i work per level

1

#children #levels work

Q1(f): Solving the Summation

For a geometric series with a ratio < 1, it converges!

(Sum of a finite geometric series)

Note: formula like this will be provided for exams

General
Advice

Recursive Running Times - Guidance
•

OR

•

● Draw a tree such that:

○ Each node has a children

○ The “size of each node is -b times the size of its

parent

○ The “work” for each node is f applied to its size

○ The height of the tree is n/b

● Sum the tree horizontally

○ I.e. identify the total work done at each level

● Sum the levels’ work vertically

○ Given the sum of all work in the entire tree

Only differences between /b

cases highlighted in yellow

Putting it All Together

Problem 2(a)

(a) Find a recurrence T(n) modeling the worst-case runtime complexity of f(n).

?

Problem 2(a)

(a) Find a recurrence T(n) modeling the worst-case runtime complexity of f(n).

● 2 function calls -> a = 2
● Reducing input size by half -> (n / 2)
● Non-recursive work has loop with n iterations

and some constant work -> f(n) = c_2n + c_1

Problem 2(b)

(b) Find a closed form to your answer for (a).

Our first call to T(n)

Our first call to T(n)

Input: n

Our first

call to T(n)

Input: n

Work:

c2*n + c1

Input:

n/2

Input:

n/2

“2T(...)” = 2

recursive calls

Input: n

Work:

c2*n + c1

Input:

n/2

Input:

n/2

Input: n

Work:

c2*n + c1

Input: n/2

Work:

c2*(n/2)+c1

Input: n/2

Work:

c2*(n/2)+c1

Input: n

Work:

c2*n + c1

Input: n/2

Work:

c2*(n/2)+c1

Input: n/2

Work:

c2*(n/2)+c1

Input:

n/4

Input:

n/4

Input:

n/4

Input:

n/4

Input: n

Work:

c2*n + c1

Input: n/2

Work:

c2*(n/2)+c1

Input: n/2

Work:

c2*(n/2)+c1

Input: n/4

Work:

c2*(n/4)+c1

Input: n/4

Work:

c2*(n/4)+c1

Input: n/4

Work:

c2*(n/4)+c1

Input: n/4

Work:

c2*(n/4)+c1

Input: n

Work:

c2*n + c1

Input: n/2

Work:

c2*(n/2)+c1

Input: n/2

Work:

c2*(n/2)+c1

Input: n/4

Work:

c2*(n/4)+c1

Input: n/4

Work:

c2*(n/4)+c1

Input: n/4

Work:

c2*(n/4)+c1

Input: n/4

Work:

c2*(n/4)+c1

Input: n

Work:

c2*n + c1

Input: 1 Input: 1 Input: 1 Input: 1

Input: n/2

Work:

c2*(n/2)+c1

Input: n/2

Work:

c2*(n/2)+c1

Input: n/4

Work:

c2*(n/4)+c1

Input: n/4

Work:

c2*(n/4)+c1

Input: n/4

Work:

c2*(n/4)+c1

Input: n/4

Work:

c2*(n/4)+c1

Input: n

Work:

c2*n + c1

Input: 1

Work: c0

Input: 1

Work: c0

Input: 1

Work: c0
Input: 1

Work: c0

Input: n/2

Work:

c2*(n/2)+c1

Input: n/2

Work:

c2*(n/2)+c1

Input: n/4

Work:

c2*(n/4)+c1

Input: n/4

Work:

c2*(n/4)+c1

Input: n/4

Work:

c2*(n/4)+c1

Input: n/4

Work:

c2*(n/4)+c1

Input: n

Work:

c2*n + c1

Input: 1

Work: c0

Input: 1

Work: c0

Input: 1

Work: c0
Input: 1

Work: c0

Since we’re in /b case:

With a, b, and f(n) plugged

in:

Thank You!

	Slide 1: Recurrences
	Slide 2: Recurrence Relations
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7: Tree Method Overview
	Slide 8: Big Idea: T(n/b)
	Slide 9: Big Idea: T(n - b)
	Slide 10: Q1(a) Tree Method Example
	Slide 11: Your Turn!
	Slide 12: Q1(b) Base Case Doesn’t Matter!
	Slide 13: Q1(c) Constants for f(n) Don’t Matter!
	Slide 14: Q1(d) Branching Factor (a) Matters!
	Slide 15: Solving the Summation
	Slide 16: Q1(e) Reduction Factor (/b) Does Matter!
	Slide 17: Solving the Summation
	Slide 18: Q1(f): Tree method
	Slide 19: Q1(f): Solving the Summation
	Slide 20: General Advice
	Slide 21
	Slide 22
	Slide 23
	Slide 24: Putting it All Together
	Slide 25: Problem 2(a)
	Slide 26: Problem 2(a)
	Slide 27: Problem 2(b)
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40: Thank You!

