
 CSE 332 - Section 3 Worksheet

 0. Recurrence Relations

 a) Find a recurrence T(n) modeling the worst-case runtime complexity of f(n)

 1 f(n) {
 2 if (n <= 0) {
 3 return 1
 4 }
 5 return 2 * f(n - 1) + 1
 6 }

 b) Find a recurrence T(n) modeling the worst-case runtime complexity of g(n)

 1 g(n) {
 2 if (n <= 1) {
 3 return 1000
 4 }
 5 if (g(n/3) > 5) {
 6 for (int i = 0; i < n; i++) {
 7 println(“Yay”)
 8 }
 9 return 5 * g(n/3)
 10 } else {
 11 for (int i = 0; i < n * n; i++) {
 12 println(“Yay)
 13 }
 14 return 4 * g(n/3)
 15 }

 CSE 332 - Section 3 Worksheet

 1. Tree Method
 For each of the following recurrence relations, use the tree method to convert it to closed form:

 a)

 CSE 332 - Section 3 Worksheet

 b)

 c)

 CSE 332 - Section 3 Worksheet

 d)

 At each level the number of nodes in the tree will be triple the number of nodes at the
 previous level. If we consider the root to be at level 0 then the number of nodes on
 level is . Additionally, the size of each subproblem will be half that of its parent, and 𝑖 3 𝑖

 so the size of each node on level is , which means there is non-recursive work. 𝑖 𝑛

 2 𝑖
 𝑛

 2 𝑖

 The total work done on level is therefore . Because there are levels the 𝑖 3
 2 () 𝑖

 𝑛 log
 2
 𝑛

 solution is given by the sum

 𝑛
 𝑖 = 0

log
 2
 𝑛 − 1

∑ 3
 2 () 𝑖

 Applying the geometric series formula we get

 𝑛
 1 − 3

 2 ()log
 2
 𝑛

 1 − 3
 2

() = 2 𝑛 3
log

 2
 𝑛

 2
log

 2
 𝑛 − 1 () = 2 𝑛 𝑛

log
 2
 3

 𝑛 − 1 () = 2 𝑛
log

 2
 3

− 2 𝑛

 This means that the solution is . Θ 𝑛
log

 2
 3 ()

 CSE 332 - Section 3 Worksheet

 e)

 f)

 At each level the number of nodes in the tree will be double the number of nodes at the
 previous level. If we consider the root to be at level 0, then the number of nodes on level

 is . Additionally, the size of each subproblem will be one third that of its parent, and 𝑖 2 𝑖

 so the size of each node on level is , which means there is non-recursive work. 𝑖 𝑛

 3 𝑖
 𝑛

 3 𝑖

 The total work done on level is therefore . 𝑖 2
 3 () 𝑖

 𝑛
 Because there are levels the solution is given by the sum log 𝑛

 𝑖 = 0

log
 3
 𝑛 − 1

∑ 2
 3 () 𝑖

 𝑛 = 𝑛
 𝑖 = 0

log
 3
 𝑛 − 1

∑ 2
 3 () 𝑖

= 𝑛 * 𝑐

 Observe that this is a geometric series with a ratio less than 1, and so the sum is
 upper-bounded by a constant.

 This means that the solution is . Θ(𝑛)

 CSE 332 - Section 3 Worksheet

 Each node will have two child nodes since there are two recursive calls from the recurrence relation. At
 each level, each node will have work of 1, so the total work per level is 2^i. The input size decreases by
 two for every recursive call and reaches the base case when the input is 1, so the total number of calls

 will be around n/2. Combining these information, we can conclude that T(n) = . Using the
 𝑖 = 0

 𝑛 /2 − 1

∑ 2 𝑖

 geometric serie sum, we can further simplify T(n) to , which is in . 2
 𝑛

− 1 Θ(2
 𝑛
)

 2. Putting It All Together
 Consider the function . Find a recurrence modeling the worst-case runtime of this function and then find a Big-Oh 𝑓 𝑛 ()
 bound for this recurrence.

 1 f(n) {

 2 if (n <= 1) {

 3 return 0

 4 }

 5 int result = f(n/2)

 6 for (int i = 0; i < n; i++) {

 7 result *= 4

 8 }

 9 return result + f(n/2)

 10 }

 a) Find a recurrence modeling the worst-case runtime complexity of 𝑇 𝑛 () 𝑓 𝑛 ()

 CSE 332 - Section 3 Worksheet

 We look at the three separate components (base case, non-recursive work, recursive
 work). The base case is a constant amount of work, because we only do a return
 statement. We’ll label it . The non-recursive work is a constant amount of work (we'll 𝑐

 0
 call it) for the assignments and if tests and a constant (we'll call) multiple of for 𝑐

 1
 𝑐

 2
 𝑛

 the loops. The recursive work is . 2 𝑇 𝑛
 2 ()

 Putting these together, we get:

 𝑇 𝑛 () = 𝑐
 0

 , if 1

 𝑇 𝑛 () = 2 𝑇 𝑛
 2 () + 𝑐

 2
 𝑛 + 𝑐

 1
 , otherwise

 b) Use your answer in part (a) to find a closed form for 𝑇 𝑛 ()

