
 CSE 332 - Section 3 Worksheet 

 0. Recurrence Relations 

 a)  Find a recurrence T(n) modeling the worst-case runtime complexity of f(n) 

 1  f(n) { 
 2  if (n <= 0) { 
 3  return 1 
 4  } 
 5  return 2 * f(n - 1) + 1 
 6  } 

 b)  Find a recurrence T(n) modeling the worst-case runtime complexity of g(n) 

 1  g(n) { 
 2  if (n <= 1) { 
 3  return 1000 
 4  } 
 5  if (g(n/3) > 5) { 
 6  for (int i = 0; i < n; i++) { 
 7  println(“Yay”) 
 8  } 
 9  return 5 * g(n/3) 
 10  } else { 
 11  for (int i = 0; i < n * n; i++) { 
 12  println(“Yay) 
 13  } 
 14  return 4 * g(n/3) 
 15  } 
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 1.  Tree Method 
 For each of the following recurrence relations, use the tree method to convert it to closed form: 

 a) 
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 b) 

 c) 



 CSE 332 - Section 3 Worksheet 

 d) 

 At each level the number of nodes in the tree will be triple the number of nodes at the 
 previous level. If we consider the root to be at level 0 then the number of nodes on 
 level  is  . Additionally, the size of each  subproblem will be half that of its parent, and  𝑖  3  𝑖 

 so the size of each node on level  is  , which means there is  non-recursive work.  𝑖  𝑛 
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 e) 

 f) 

 At each level the number of nodes in the tree will be double the number of nodes at the 
 previous level. If we consider the root to be at level 0, then the number of nodes on level 

 is  . Additionally, the size of each subproblem  will be one third that of its parent, and  𝑖  2  𝑖 

 so the size of each node on level  is  , which means there is  non-recursive work.  𝑖  𝑛 

 3  𝑖 
 𝑛 

 3  𝑖 

 The total work done on level  is therefore  .  𝑖  2 
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 Because there are  levels the solution is given  by the sum log  𝑛 
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 Observe that this is a geometric series with a ratio less than 1, and so the sum is 
 upper-bounded by a constant. 

 This means that the solution is  . Θ( 𝑛 )
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 Each node will have two child nodes since there are two recursive calls from the recurrence relation. At 
 each level, each node will have work of 1, so the total work per level is 2^i. The input size decreases by 
 two for every recursive call and reaches the base case when the input is 1, so the total number of calls 

 will be around n/2. Combining these information, we can conclude that T(n) =  .  Using the 
 𝑖    =    0 

 𝑛  /2    −    1 

∑  2  𝑖 

 geometric serie sum, we can further simplify T(n) to  , which is in  .  2 
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 2. Putting It All Together 
 Consider the function  . Find a recurrence modeling  the worst-case runtime of this function and then find a Big-Oh  𝑓  𝑛 ( )
 bound for this recurrence. 

 1  f(n) { 

 2      if (n <= 1) { 

 3          return 0 

 4      } 

 5      int result = f(n/2) 

 6      for (int i = 0; i < n; i++) { 

 7          result *= 4 

 8      } 

 9      return result + f(n/2) 

 10 } 

 a)  Find a recurrence  modeling the  worst-case runtime  complexity  of  𝑇  𝑛 ( )  𝑓  𝑛 ( )
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 We look at the three separate components (base case, non-recursive work, recursive 
 work). The base case is a constant amount of work, because we only do a return 
 statement. We’ll label it  . The non-recursive  work is a constant amount of work (we'll  𝑐 

 0 
 call it  ) for the assignments and  if  tests  and a constant (we'll call  ) multiple of  for  𝑐 

 1 
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 b)  Use your answer in part (a) to find a closed form for  𝑇  𝑛 ( )


