
Section 2
Runtime

Big-Oh Review

Main ideas:
•In Big-O, we focus on the growth of the runtime as the input size n goes to infinity.
•Big-O represents an upper bound on the algorithm runtime. Not necessarily tight!

Big-Omega and Big-Theta

.

Practice

Practice

1. Always True
2. Always True
3. Sometimes True
4. Always True
5. Sometimes True
6. Sometimes True
7. Sometimes True
8. Always False

Practice

False

Worksheet problems

1. Prove that f(n) ∈ O(g)

a) f(n) = 7n, g(n) = n/10
b) f(n) = 1000, g(n) = 3n3

c) f(n) = 2n, g(n) = 32n

d) f(n) = 7n2 + 3n, g(n) = n4

e) f(n) = n + 2nlog(n), g(n) = nlog(n)

How to Approach these Problems

When trying to prove something like f(n) ∈ O(g), f(n) ∈ Ω(g), or
f(n) ∈ Θ(g), you need to find a c and n0.
● The proof, or final solution, for the problem should simply

declare the values of c and n0 and should plug them in/explain
why they make the inequality true.

● The proof should not explain how to solve for c and n0- that
would be your own work.

1a) Proof - Final Solution

1b) Proof - Final Solution

1c) Proof - Final Solution

1d) Proof - Final Solution

•

1e) Proof - Final Solution

•

Worksheet problems
2. We provide functions f(n) and g(n). Prove that f(n) ∈ Θ(g)

a) f(n) = 7n, g(n) = n/10

b) f(n) = n3 + 10n, g(n) = 3n3

2a) Proof - Final Solution

•

2b) Proof - Final Solution Part 1

•

2b) Proof - Final Solution Part 2

•

Get the Θ(·) bound of each
function below.
a) f(n) = worst case running

time
b) g(n) = best case running

time

We will construct equations for
each function and then simplify
them to get a closed form.

Worksheet problems: Q3

First function (lines 3-5) always runs once.

Worst case for lines 7-16 is if every value in
array is unique. This means for every iteration
of the outer loop, the inner loop will iterate
through the rest of the array. Total number of
iterations is n + (n-1) + (n-2) + … + 1.
There is a formula for this sum: n * (n+1) / 2

f(n) = n + n(n+1)/2 => n2. This is quadratic
running time

Do something similar to Q2 proofs to prove
that n + n(n+1)/2 ∈ Θ(n2).

3a) f(n) = worst case running time

First function (lines 3-5) always runs once.

Best case for lines 7-16 is if every value in
array is the same. This means the inner loop
will only run once: for the first iteration of the
outer loop. Then, it will not run because every
index will be visited after the first time.

g(n) = n + n => n
This is linear running time

Do something similar to Q2 proofs to prove
that n + n ∈ Θ(n).

3b) g(n) = best case running time

