Section 2

Runtime

Big-Oh Review

e Definition:
- If /N > Rand g:N - R are two functions, then we say f(n) € 0(g(n)) provided there exists
positive constants « and n, such that f(n) < « - g(n) for all values of n > n,,.

Why is ¢ important? A Why is g important? A
Ensures that we focus Ensures that we focus on 4
on the shape of the g the input size n as it goes g i)
runtime curve’s growth. € to infinity by allowing us § 3
" to ignore small values B £\
input size input size 1,

Main ideas:

/In Big-0O, we focus on the growth of the runtime as the input size n goes to infinity.
*Big-0 represents an upper bound on the algorithm runtime. Not necessatrily tight!

Big-Omega and Big-Theta

 Definition of Q:

+ If f:N > R and g:N - R are two functions, then we say f(n) € Q(g(n)) provided there exists

positive constants © and n, such that f(n) > < - g(n) for all values of n > n,,.
« We also focus on the growth of the runtime as the input size n goes to infinity.

* () represents a lower bound on the algorithm runtime. Not necessarily tight either.

* Definition of 0:
+ If f:N > R and g:N - R are two functions, then we say f(n) € 8(g(n)) provided that both

f(n) € 0(g(n)) and f(n) € Q(g(n))

* () represents a tight/exact bound on the algorithm runtime.

Practice

« Suppose that f(n) € 0(n). Indicate if each statement is
gugranteed to be True, guaranteed to be False, or might be
either.

f(n) € 0(n?)

f(n) € 0(4n)

f(n) € 0(logn)

f(n) € 0O(nlogn)

f(n) € 0(1)

f(n) € Q(n)

f(n) € Q(logn)

f(n) € Q(n?)

NS AN NN

Practice

« Suppose that f(n) € 0(n). Indicate if each statement is
guaranteed to be True, guaranteed to be False, or might be
either.

1. f(n) € O(nz) 1. Always True
2. f (n) € 0(4n) 2. Always True
3 f(n) € O(logn) 3. Sometimes True
4. f(n) € 0O(nlogn) 4. Always True
5 f(n)eo() 5. Sometimes True
6. f(n) € Q(n) 6. Sometimes True
7. f(n) € Q(logn) 7. Sometimes True
8 f(n) € Q(nz) 8. Always False

Practice

« Suppose that f(n) € 0(n). Indicate if each statement is guaranteed to be True,
guaranteed to be False, or might be either.

1. f(n) € 0(n%

1. Always True
2. f(m)eo(4n)

1. Always True
3. f(n) € O0(logn)

1. Sometimes True
4 f(n) € O(nlogn)
1. Always True
f(n) € 0(1)

1. Sometimes True

f(n) € 0(n)

1. Sometimes True

f(n) € Q(logn)

1. Sometimes True

f(n) € Q(n?)

1. False

R N &N =

Worksheet problems

1. Prove that f(n) € 0(g)

a) f(n)=7n,g(n) =n/10

b) f(n) =1000, g(n) = 3n°

c) f(n) =2"g(n) =3"

d) f(n) =7n%+ 3n, g(n) = n*

e) f(n) =n+ 2nlog(n), g(n) = nlog(n)

How to Approach these Problems

When trying to prove something like f(n) € 0(g), f(n) € Q(g), or
f(n) € 6(g), you need to find a c and n,,.

. The proof, or final solution, for the problem should simply
declare the values of ¢ and n, and should plug them in/explain
why they make the mequallty true.

« The proof should not explain how to solve for ¢ and n - that
would be your own work.

1a) f(n) = 7n, g(n) = —

n
10

* We need to find positive constants ¢ and ny so that for alln = n,

we have that /n < cl%

n < n
=70
70n < cn

70 < c

* Meaning that this inequality holds for all values of n > 0 so long as
¢ = 70,sowe canselectc =70 and ny = 1.

Thisis ok only becausewe saidn =>ngy > 0

1a) Proof - Final Solution

1b) f(n) = 1000, g(n) = 3n*

* We need to find positive constants ¢ and ny so that for alln = n,
we have that 1000 < ¢ - 3n?.

* Here we can select ¢ = 1 and then make sure n, is large enough
so 1000 < 3n?

* If we select ny = 20 then 3n% = 1200
* Definition of O holds for c = 1 and ny, = 20.

1b) Proof - Final Solution

L c) f(n)=2", g(n) = 3"

We need to find positive constants ¢ and ng so that for all n > ng
we have that 2" < ¢ x 32"

on < ¢ % 3277,

N < c* gn

If we select ng = 2 and ¢ = 1 then:
277, S 1 % 977,
certainly holds true V,, > 2

1c) Proof - Final Solution

1d) f(n) =Tn*+3n, g(n) =n*

* We need to find positive constants ¢ and ny so that for alln = n,
we have that 7n* + 3n < ¢ n*
7n* +3n<cn?
7n* +3n<7n*+3n* <cn* Aslngsnz1
10n* < c-n*

* Because 10n? < ¢ -n*forc = 10 and everyn > 1, we can satisfy
f(n) € 0(g(n))forc =10andny, = 1

1d) Proof - Final Solution

Let c =10 and nl o =1, and consider an arbitrary n > nll .

We have 7nll 2<7nl 4 (since n > 1) and
3n < 3nl 4 (since n > 1).
Adding these inequalities we have

7n0 2+3n0 <10n0 4, as required.

le) f(n)=n+2nlogy,n, g(n) =nlogyn

* We need to find positive constants ¢ and ny so that for alln = n,
we have thatn + 2nlog, n < c-nlog, n
n+2nlog,n < c-nlog,n
n+2nlog,n < 3nlog,n <c-nlog,n Aslongsn=2

* Because
* 3nlog,n < c-nlog,nforc =3 andeveryn = 1,
* andn + 2nlog, n < 3nlog, n foreveryn > 2,

» we can satisfy f(n) € O(g(n)) forc =3 andny, = 2

1e) Proof - Final Solution

Letc =3and n o =2. Foran arbitrary n = n ,, we have:
n <nlognl (sincel nl =2]lognl =1)
2nl lognl <2ni lognl

Adding these inequalities, we have n +
2nlognil <cl -nl lognl , asrequired. So we have f(n) ¢

O(g(n)).

Worksheet problems
2. We provide functions f(n) and g(n). Prove that f(n) € O(g)
a) f(n)=7n,g(n) =n/10

b) f(n)=n+10n,g(n) = 3n°

n

2a) f(n) = 7n,g(n) = 5
* f(n) € O(g(n)) shown in 1a
* Now we show f(n) € Q(g(n))

* We need to find posit7i1ve constants ¢ and ny so thatfor alln = n,

we have that 7/n > C1_o

* Meaning that this inequality holds for all values of n > 0 so long as
¢ < 70,sowe canselectc = 70and ny = 1.

2a) Proof - Final Solution

Again,weletc =70and nll o=1,letn = nl 4 be an arbitrary

integer.
We start with the left-hand-side of the inequality. Observe that
ni ni
n =70°W—CD W

Thus 7n > ¢ - 2 forall n > n,.
10 0

n

We thus have 7n € Q (10), by definition. Since we have both O
and Q bounds, we conclude 7n € 0 [2-) .

2b) f(n) =n°+10n, g(n) = 3n’

e To show O:

* We need to find Qositive constants ¢ and ny so that for alln = ny we have that
n>+ 10 < c- 3n°.

e n3+10 < 2n3aslongasn >3

« And2n3 <c-3ndasc >2

* Wecanselectc=1andnyg =3
* To show ():

* We need to find gositive constants ¢ and ny so that for alln = ny we have that
n>+10 = c-3n°.

* Let’sselectc = é
« n3 4+ 10 > n”3 for every choice of n
* Definition of 0 holds for c =~ and ny = 1

2b) Proof - Final Solution Part 1

First we will show n3 + 10 belongs to O(3n3).

Letc =1 and ny, = 3 and let n = n, be an arbitrary integer.

Note that n3 + 10 < n3 + n3 = 2n3(as n > 3 gives n3 > 27)

We thus have n3 + 10 < 2n3<1-3n3.
So n3+10 € O(3n3)

2b) Proof - Final Solution Part 2

Next, we show n3 + 10 € Q(3n3).

Consider ¢ = % and n, = 1. For an arbitrary n > n, we have:
1 1
n3 + 10 2§-Sn3+ 10 >§3n3 = c3n?

We thus have n3 + 10 € Q(3n?)

. Since we have matching O and Q bounds, we conclude
n3 + 10 € 0(3n3).

Woaorksheet problems: Q3

1 int numUnique(String[] values) {

2 boolean[] visited = new boolean[values.length] Get the @() bound of each

3 for (int i = @; i < values.length; i++) { function below.

Ly TAnEE a) f(n) = worst case running

6 int out = © time

7 for (int i = @; i < values.length; i++) { b) g(n) = best case running

8 if (!visited[i]) { time

S out += 1

10 for (int j = i; j < values.length; j++) {

1 i ualues]Ll-equalsivaluesly L) We will construct equations for
12 visited[j] = true . . .
- } each function and then simplify
14 } them to get a closed form.

15 }

16 }

17 return out;

18 }

3a) f(n) = worst case running time

O 00 NOYUT A WN B

T T Y T T T
NOoO U hdh WNRO

18 }

int numUnique(String[] values) {

boolean[] visited = new boolean[values.length]
for (int i = @; i < values.length; i++) {
visited[i] = false
}
int out = ©
for (int i = @; i < values.length; i++) {
if (!visited[i]) {
out += 1
for (int j = i; j < values.length; j++) {
if (values[i].equals(values[j])) {
visited[j] = true

}

}
}

return out;

First function (lines 3-5) always runs once.

Worst case for lines 7-16 is if every value in
array is unique. This means for every iteration
of the outer loop, the inner loop will iterate
through the rest of the array. Total number of
iterationsisn + (n-1) + (n-2) + ... + 1.

There is a formula for this sum: n * (n+1) / 2

f(n) = n + n(n+1)/2 => n2. This is quadratic
running time

Do something similar to Q2 proofs to prove
that n + n(n+1)/2 € O(n?).

3b) g(n) = best case running time

O 00 NOYUT A WN B

T T Y T T T
NOoO U hdh WNRO

18 }

int numUnique(String[] values) {

boolean[] visited = new boolean[values.length]
for (int i = @; i < values.length; i++) {
visited[i] = false
}
int out = ©
for (int i = @; 1 < values.length; i++) {
if (!visited[i]) {
out += 1
for (int j = i; j < values.length; j++) {
if (values[i].equals(values[j])) {
visited[j] = true

}

J
}

return out;

First function (lines 3-5) always runs once.

Best case for lines 7-16 is if every value in
array is the same. This means the inner loop
will only run once: for the first iteration of the
outer loop. Then, it will not run because every
index will be visited after the first time.

gin)=n+n=>n
This is linear running time

Do something similar to Q2 proofs to prove
thatn + n € O(n).

