CSE 332: Data Structures & Parallelism

Lecture 9:Hashing

Yafga Khan
Summer 2025

Today

« Dictionaries
— Hashing

Ann once meds .
. £x 03 due Todzy
* EXol released froaﬁuaf

o Eﬁ% \ wee,k S P({JQ/‘(}

2/19/2023

Motivating Hash Tables

For dictionary with n key/value pairs

insert find delete

* Unsorted linked-list O(n) * O(n) O(n)

« Unsorted array O(n) * O(n) O(n)

« Sorted linked list O(n) O(n) O(n)

« Sorted array O(n) O(logn) O(n) |

* Balanced tree O(logn) O(logn) O(log n)
—_—

* Assuming we must check to see if the key has already been inserted.
Cost becomes cost of a find operation, inserting itself is O(1).

2/19/2023

Hash Tables

» Aim for constant-time (i.e., O(1)) find, insert, and delete
— “On average” under some reasonable assumptions

N\

* A hash table is an array of some fixed size

hash table
* Basic idea: lo
ey
hash function:
. int mod Tablesize
h(l_{gy) —> EF - index
>
key space (e.g., integers, strings) l TableSize —1

2/19/2023 4

Aside: Hash Tables vs. Balanced Trees

* In terms of a Dictionary ADT for just insert, £ind, delete, hash
tables and balanced trees are just different data structures

— Hash tables O(1) on average (assuming few collisions)
— Balanced trees O(1og n) worst-case

« Constant-time is better, right?
\ g. . . .
— Yes, but you need “hashing to behave” (must avoid collisions)
— Yes, but what if we want to £indMin, findMax, predecessor,
and successor, printSorted?
« Hashtables are not designed to efficiently implement these

operations T
* Your textbook considers Hash tables to be a different ADT

—_—

* Not so important to argue over the definitions

2/19/2023

Hash Tables
| kC? SP“C@l

There are m possible keys (m typically large, even infinite)
We expect our table to have only n items B

n is much less than m (often written n << m)
" c— /

Many dictionaries have this property

— Compiler: All possible identifiers allowed by the langdage vs.
fhose used in some file of one program

-

— Database: All possible student names vs. students enrolled

L —————

— Al: All possible chess-board configurations vs. those
<~ considered by the current player P

—

2/19/2023

Hash Functions

An ideal hash function:

- Is fast to compute

« “Rarely” hashes two“used_keys to the same index
— Often impossible in theory; easy in practice
— Will handle collisions a bit later

hash tabl

0

ash funcﬁ®

ift mod Tablesize
- index

h(key) — int

key space (e.g., integers, strings)

TableSize -1 /

2/19/2023

Who hashes what?

« Hash tables can be generic
— To store keys of type E, we just need to be able to:
1. Test equality: are you the E I'm looking for?
2. Hashable: convert any E to an int

 When hash tables are a reusable library, the division of
responsibility generally breaks down into two roles: ‘//

client hash table library

E o)

collision? collision

int/\mmmms) table-index |

resolution

We will learn both roles, but most programmers “in the real world”
spend more time as clients while understanding the library

2/19/2023 8

3,
More on roles [

\c>
1=

N

—_—

Some ambiguity in terminology on which parts are “hashing”
client hash table library

collision? collision

F =) int Emmmes) table-index |

resolution

“hashing™?

Two roles must both contribute to minimizing collisions (heuristically)
« Client should aim for different ints for expected items

— Avoid “wasting” any part of E or the 32 bits of the int
« Library should aim for putting “similar” ints in different indices

— conversion to index is almost always “mod table-size”
— using prime numbers for table-size is common

2/19/2023 9

What to hash?

« We will focus on two most common things to hash: ints and strings

« If you have objects with several fields, it is usually best to have
most of the “identifying fields” contribute to the hash to avoid
collisions

« Example:

class Person {
String first; String middle; String last;

Date birthdate;
} — L
* Aninherent trade-off: hashing-time vs. collision-avoidance
e

— Use all the fields?
— Use only the birthdate?
— Kamittedly, what-to-hash is often an unprincipled guess ®

2/19/2023 10

Hashing integers

key space = integers

Simple hash function:

e Client: h(x) = x
 Libraryg(x) = h(x) % TableSize

—sr—

« Fairly fast and natural

Example:
« TableSize =10

* Inser }é éﬂ, 34,10
* (As usual, ignoring corresponding data)
h7) =7

2/19/2023

o 0 N N 0N A W N = O

%

U\

11

Hashing integers (Soln)

key space = integers

Simple hash function:

 Client: h (x)
 Libraryg(x) = £(x) % TableSize
« Fairly fast and natural

X

Example:

« TableSize =10

 |nsert7,18, 41, 34, 10

* (As usual, ignoring corresponding data)

2/19/2023

o 0 N N 0N A W N = O

10

41

34

18

Collision-avoidance
EEY S, LibleSizer

. 7 ” " . .
« With“x % TableSize” the number of collisions depends on
— —_——

— the ints inserted (obviously)
— TableSize

 Larger table-size tends to help, but not always
— Examplezzg, 24,56, 43, 10
with TableSize = 10 and TableSize = 60

« Technique: Pick table size to be prime. Why?
— Real-life data tends to have a pattern § I O / >
— “Multiples of 617 are probably/less likely than “multiples of 60”
— We'll see some collision strategies do better with prime size

2/19/2023 13

More arguments for a prime table size

If TableSize is 60 and.. & (O S, 29,..5%

— Lots of keys are multlples of 5, wasting 80% of table
— Lots of keys are multiples of 10, wastmg_&O% of table 0

— Lots of keys are multiples of 2 wasting 50% of table€7 \
—_— — (4 l’
f TableSize is 61..)

— Collisions can still happen, but5 10, 15, 20 .. will fill table
— Collisions can still happen but 10 20, 30, 40 .. will fill table
— Collisions can still happen but 2, 4, 6, 8, ... will fill table

In general, ifg;ch/: are “co-prime” (means ged (a,p)==1), then

‘ = b (mod p) will always have a solution

“— Givén table size p and keys as multiples of a, we'll get a decent
distribution if a & p are co-prime

— S0 good to have a TableSize that has no common factors

with any “likely pattern” ax

2/19/2023 14

What if the key is not an int?

« If keys aren’t ints, the client must convert to an int
— Trade-off: speed and distinct keys hashing to distinct ints

« Common and important example: Strings
— Key space K =5,S:S,...S1
« where s, are chars: s; € [0,256]
— Some choices: Which avoid collisions best?

1. h(K)=s, ~ > a 0‘[9/ ﬁ'&/b

—) _—
m—1
Th the lib id
2 ww=[S, j > e, e, Mementetba sue

i=0 to find index into the table

—

3. h(K)= mz:q@}/? _‘}[_:‘,Q
—0 o _\

R
3 37 Y Is

2/19/2023

Java Implementation of String.hashCode

hashCode(byte[] value) {

value.length >> 1;
0; 1 < length; i++) {
x h + getChar(value, 1);

(3) so} S>5 £S5,

SV\\L

2/19/2023

Aside: Combining hash functions 32z

L—

A few rules of thumb / tricks: lJ/\/j,L :
1. Use all 32 bits (careful, that includes negative numbers)

k
2. Use different overlapping bits for different parts of the hash

_ This is why a factor of 371 works better than 256!

3. When smashing two hashes into one hash, use bitwise-xor
— bitwise-and produces too many 0 bits Or\ = |
— bitwise-or produces too many 1 bits

Ky — O

4. /IFIy on expertise of others;/consult books and other resources
~< s s

5. If keys are known ahead of time, choose a perfect hash
C //

2/19/2023 17

Collision resolution

Collision:
When two keys map to the same location in the hash table

We try to avoid it, but number-of-possible-keys exceeds table size

So hash tables should support collision resolution
— ldeas?

2/19/2023

18

Flavors of Collision Resolution

Separate Chaining

Open Addressing C o

Linear Probing h | /~b/'

« Quadratic Probing
/ |

Double Hashing

2/19/2023

19

Separate Chaining

2/19/2023

Chaining: All keys that map to the same
table location are kept in a list
(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example: msert 2],@7/;12/42 with

mod hashing ancTTableslze =10

T
ol /-0
1|/
2 | /222 122U
s/
4 | /
5 1/
6 | /
7 | —P107
8 | /
9 | /

20

Separate Chaining

J100 Chaining: All keys that map to the same
table location are kept in a list
(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example: insert 10, 22, 107, 12, 42 with
mod hashing and TableSize = 10

O 0 3 N DN h~h W N —= O
~ |- |- |- |~ |~~~

2/19/2023 21

Separate Chaining

0 J100 Chaining: All keys that map to the same

| ; table location are kept in a list
(a.k.a. a “chain” or “bucket”)

2 »22| /

3 / As easy as it sounds

4 /

5 / Example: insert 10, 22, 107, 12, 42 with

6 / mod hashing and TableSize = 10

7 /

8 /

9 /

2/19/2023 22

Separate Chaining

0 J100 Chaining: All keys that map to the same

| ; table location are kept in a list
(a.k.a. a “chain” or “bucket”)

2 »22| /

3 / As easy as it sounds

4 /

5 / Example: insert 10, 22, 107, 12, 42 with

6 / mod hashing and TableSize = 10

7 *107 /

8 /

9 /

2/19/2023 23

Separate Chaining

0 J100 Chaining: All keys that map to the same

| ; table location are kept in a list
(a.k.a. a “chain” or “bucket”)

2 »12 »22| /

3 / As easy as it sounds

4 /

5 / Example: insert 10, 22, 107, 12, 42 with

6 / mod hashing and TableSize = 10

7 *107 /

8 /

9 /

2/19/2023 24

Separate Chaining

0 1ol Chaining: All keys that map to the same
] table location are kept in a list

L/ (a.k.a. a “chain” or “bucket”)

2 »42 »12 »22| /

3 / As easy as it sounds

4 /

5 / Example: insert 10, 22, 107, 12, 42 with

6) mod hashing and TableSize = 10

7 *107 /

8 /

? / Worst case time for find?

2/19/2023 25

Thoughts on separate chaining

| hix) = O
Worst-case time for £ind? —

* Linear
« But only with really bad luck or bad hash function

\jSo not worth avoiding (e.g., with balanced trees at each bucket)

— Keep # of items in each bucket small
— Overhead of AVL tree, etc. not worth it if small # items per bucket

ol log(1))

Beyond asymptotic complexity, some “data-structure engineering” can

S~—

improve constant factors —

« Linked list vs. array or a hybrid of the two

» Move-to-front (eErummggsens)-

- Leave room for 1 element (or 2?) in the table itself, to optimize
constant factors for the common case 4

— A time-space trade-off...)

2/19/2023 26

Time vs. space

(only makes a difference in constant factors)

0 »10| /
1 /

2 »42
3 /

4 /

5 /

6 /

7 107
8 /

9 /

Mre/ EICM&

2/19/2023

A 4

12

A\ 4

22

-

O 0 1 O »n K~ W N =

10 | /

/I x
B0

7 x

/X

/1 x

/1 x

107 | /

/X

/X

%
5
;

A\ 4

22

27

More rigorous separate chaining analysis

Definition: The load factor, A, of a hash table is

y—

B N < number of elements
~ TableSize

Under chaining, the average number of elements per bucket is Lé 3.0

So if some inserts are followed by random finds, then on average:
« Each unsuccessful £ind compares against A items

« Each successful £ind compares against Mo items
- How big should TableSize be?? [\

2/19/2023 — 7(‘ 28

More rigorous separate chaining analysis

Definition: The load factor, A, of a hash table is

B N < number of elements
~ TableSize

Under chaining, the average number of elements per bucket is 4

So if some inserts are followed by random finds, then on average:
« Each unsuccessful £ind compares against A items

« Each successful £ind compares against 4/ 2 items

* If Aislow, find & insert likely to be O(1)
* We like to keep A around 1 for separate chaining

2/19/2023 29

Load Factor?

© 00 N OO o b WO NN -~ O

2/19/2023

?

>10| /
42| 12| 22 /
>86| /
/
n
A= — =
TableSize

30

[.oad Factor?

0 >10| /

1|

2 {a2] -2 1-[22] 1

3 |

4 |

5 | J

6 >86| /

7 |

8 | /

o L n 5
A — =05

- TableSize B 10

2/19/2023

[.oad Factor?

—

© 00 N OO o b WO N NO

2/19/2023

10| /

71 12| 31N

42 12 122

63| 73] /

/

7S] 18| 17165

>86| /

27| A7

88| 1”18 23 >198|

99| / n
A

" TableSize

?

32

[.oad Factor?

© 00 N OO o0 b WO NN -~ O

2/19/2023

10| /

A1 12| 1131

42 12 122

63| 73] /

7S] 18] 1169 95

>86| /

27| A7

88| 18] 138 >98

99| / n
A

- TableSize 1_0 B

21

2.1

33

Separate Chaining Deletion?

2/19/2023

34

Separate Chaining Deletion

Not too bad
— Find in table
— Delete from bucket
¢ Say, delete 12
« Similar run-time as insert

L\(k>a/(, la blesize

O(32@ y.

- 360

2/ 19/2023

0
1

—>?2

O 0 9 O D bk~ W

»10| /

»42

~ | ~~~ | ~~ | ~

»12

»22

107

35

Separate Chaining Deletion

* Not too bad
— Find in table
— Delete from bucket
¢ Say, delete 12
« Similar run-time as insert

2/19/2023

O 0 39 O O kB~ W NN —= O

»10| /
/
>42 »12 22
/
/
/
/
107
/
/

35

5 2
[o :
|O
t a
b,
3 7 5 ¢
A% U
47 (b
28
niv b
T

(/qau(iw(? 0“/“0l 3 IDM%&S

/Zo {3 O”ﬁ

hSLO”S |

