Lecture 08: AVL Trees

CSE 332: Data Structures & Parallelism
Yafga Khan
Summer 2025

Announcements

 EX02 Due Tonight
 EXO3 Due Monday

* Exam 1
* Friday Week 5 (14 days from now)
* https://courses.cs.washington.edu/courses/cse332/25su/exams/midterm.html

https://courses.cs.washington.edu/courses/cse332/25su/exams/midterm.html
https://courses.cs.washington.edu/courses/cse332/25su/exams/midterm.html

Today

* Recap: Dictionary ADT

* Review: Binary Search Trees
* Trees
* Basics, Properties, Operations

e Balanced BSTs?

* AVL Tree
* Basics, Properties, Operations

AVL Tree: Data Structure

Structural Property
* Each node has < 2 children

* Left subtree and right subtree of
every node heights differ by at
most 1

Order Property
* All keys in left subtree < node's key
* All keys in right subtree > node's key

Notice: BST but with 1 extra property

Q) © W
o 00O @4

AVL Tree: Is this an AVL Tree?

AVL Tree: Is this an AVL Tree? (Soln.)

AVL Tree: Node Visualization

10

\

key

value

children

AVL Tree: Operations

* find
e Same as BST

* insert

* BST insert
* Check and Fix Balance (4 cases)

e delete

* Lazy Deletion:
e find
* Mark as deleted
* Non-lazy Deletion:
* BSTdelete
* Check and Fix Balance

Today

* Recap: AVL Tree

* AVL Tree 1nsert
e General
 Single Rotation
* Double Rotation

e AVL Tree Conclusions

AVL: Data Structure

Structural Property
* Each node has < 2 children

* Left subtree and right subtree of
every node heights differ by at
most 1

Order Property
* All keys in left subtree < node's key
* All keys in right subtree > node's key

Notice: BST but with 1 extra property

Q) © W
o 00O @4

10

AVL: Operations

e find
e Same as BST
* 1nsert

* BST insert
e Check and Fix Balance (4 cases)

e delete

* Lazy Deletion:
e find
* Mark as deleted
* Non-lazy Deletion:
* BSTdelete
* Check and Fix Balance

11

Today

* Recap: AVL Tree

* AVL Tree 1nsert
e General
 Single Rotation
* Double Rotation

e AVL Tree Conclusions

12

AVL: 1nsert

Let p be the problem node where an imbalance occurs:

The inserted node is in the

1. Left-Left: left subtree of the left child of p.

2. Right-Left: right subtree of the left child of p.

3. Left-Right: left subtree of the right child of p.

4. Right-Right: right subtree of the right child of p.

|dea:

e Cases 1 & 4 are solved by a single rotation
* Cases 2 & 3 are solved by a double rotation

13

AVL: insert, Algorithm (finding + fixing p)

1. BST insert
* After: Every node's height in the path to the bottom may have changed

2. Recursive Backtracking:

e Calculate new height
* Detect height imbalance

3. If imbalance: find case + rotate

Notes:
* Only 1 deepest imbalanced node (p)
* Rebalancing deepest p = everything else is balanced

Conclusion: Only 1 p needs balancing

AVL: insert, Only 1 p needs balancing

2 C1 Do oD 0

Today

* Recap: AVL Tree

* AVL Tree 1nsert
e General
* Single Rotation
* Double Rotation

e AVL Tree Conclusions

16

AVL: insert Case 1 Left-Left Example 1

0)
2.1insert (3)
3.insert (1) violates balance property

1. insert (

p Happens to be at the root

What is the only way to fix this?
Single Rotation!

17

AVL: insert, Left-Left Single Rotation

The basic operation we’ll use to rebalance

1. Move child of p to position of p

2. p becomes the "other" child

3. Other subtrees move (based on what BST allows)

18

Any Questions?

AVL: insert Case 1 Left-Left Example 2

AVL: insert Case 1 Left-Left Example 2 (Soln.)

AVL: Single Rotation Pseudocode

Node RotateWithLeft (Node root) {
Node temp = root.left
h+2
root.left = temp.right
temp.right = root
root.height = max(root.left.height (),
root.right.height ()) + 1 h+1

temp.height = max(temp.left.height(),

a z
temp.right.height ()) + 1 /// \\\
root = temp h h
X y

return root

AVL: insert, Left-Left Single Rotation

Node p imbalanced due to insertion somewhere in Left-Left
"Grandchild subtree" increasing height

1. Insert a node at w: p becomes imbalanced

|

23

AVL: insert, Left-Left Single Rotation

Node p imbalanced due to insertion somewhere in Left-Left
"Grandchild subtree" increasing height

1. Insert a node at w: p becomes imbalanced
2. Next, roiiate at p, using BSTfact: w<b<x<p<z

h+3

h ‘ h+1

h+1

24

Any Questions?

AVL: insert, Case 1 Left-Left

After RotateWithRight

26

AVL: insert, Case 4 Right-Right

e The same but mirrored
After RotateWithLeft

W\ -

27

Today

* Recap: AVL Tree

* AVL Tree 1nsert
e General
 Single Rotation
* Double Rotation

e AVL Tree Conclusions

28

AVL: insert Case 3 Left-Right Example 1

1)
2.1insert (0)
3. insert (3) violates balance property

1. insert (

p Happens to be at the root

What is the only way to fix this?

29

AVL: insert Left-Right Attempted Fix 1

Try Single (Counter ClockWise) Rotation on 1

Is there a problem here? Order Property violated

30

AVL: insert Left-Right Attempted Fix 2

Try Single (ClockWise) Rotation on 1

Is there a problem here? Balance not fixed!

31

AVL: insert Left-Right Real Fix

Attempted Fix 1: Order Property violated
Attempted Fix 2: Balance not fixed

Real Fix: Double Rotation!

1. Rotate p's child and p's grandchild
2. Rotate p and p's new child

32

Any Questions?

AVL: insert Case 3 Left-Right Example 2

(2)
insert (3)
(5)
@O @

3

lllll

AVL: insert Case 3 Left-Right Example 2 (Soln.)

(2)
insert (3)
C f S (5)
@ &
(3

AVL: Double Rotation Pseudocode

Node DoubleRotateWithRight (Node root) {
root.right = RotateWithLeft (root.right) After RotateWithlLeft

root = RotateWithRight (root)
return root (q\\\\\
ﬁ z X wj(‘ ’. c
y z

X y

Any Questions?

AVL: insert, Case 3 Left-Right

After RotateWithLeft

/ \fx\\\\ After RotateWithRight
/b\ Kh

38

AVL: insert, Case 2 Right-Left

e The same but mirrored
After RotateWithRight

(o) R After RotateWithLeft
‘ f’ a

39

AVL: 1nsert.

1. BST insert
2. Recursive Backtracking: Detect height imbalance

3. If imbalance: Find case + Rotate,
1. Left-Left: left subtree of the left child of p.
2. Right-Left: right subtree of the left child of p.
3. Left-Right: left subtree of the right child of p.
4. Right-Right: right subtree of the right child of p.

Assuming tree was balanced before insert (it is), only one case occurs

42

ﬁase 1:Left-Left \
The insertion is in the Left subtree of the Left child of the problem node

AN

o /

/ Gase 2:Right-Left

The insertion is in the Right subtree of the Left child of the problem node

/\ |

K X y w X

A2

™

/

@se 3:Left-Right

The insertion is in the Left subtree of the Right child of the problem node

A

Iy £
/N
&y y

z

A2

O\ /Case 4:Rigiht-Righ

5

N

/

Legend \
Regular Nodes
O-"Problem“ Node

Subtrees

Insertion Area

The insertion is in the Right subtree of the Right child of the problem node

),

Any Questions?

AVL: insert Exercise: 1 2 5 3 4

Today

* Recap: AVL Tree

* AVL Tree 1nsert
e General
 Single Rotation
* Double Rotation

e AVL Tree Conclusions

46

Let S(h)be the minimum # of nodes in an AVL tree of height
h, then:

0 if h=—1
S(h) = 1 if h=0

1+ SCh—1) +S(h — 2) otherwise

Minimal AVL Tree S (h)

>

AVL: The shallowness bound

Let S(h) = the minimum number of nodes in an AVL tree of height h

* If we can prove that S(h) grows exponentially in h, then a tree with n nodes has a
logarithmic height

* Step 1: Define S(h) inductively using AVL property

e Step 2: Show this recurrence grows really fast

e Similar to Fibonacci numbers
* Can prove forall h, S(h) > ¢" — 1

Golden ratio ¢ = 1475 ~ 1.62
 Growing faster than 1.62" is “plenty exponentia

I”

AVL: The Golden Ratio a b

& & &
N ~ _/
1+ V5 162 a+b
This is a special number o 2 o atbistoaasaistob

* Aside: Since the Renaissance, many artists and architects have proportioned their

work (e.g., length:height) to approximate the golden ratio: If (a+b) /a = a/b,
thena = ¢b

* We will need one special arithmetic fact about ¢ : S e

- ((1+51/2) /2) 2 ‘ PLEBSING PROPORTIONS FOUND 1N NIATURE
== (l + 2*51/2 + 5) /4 THE. RETIO LONG _ BOTH TOGETHER

INHERE. . - oG = |-6l8
= (6 + 2*51/2)/4

(o)) b

- 1 2 Q\,o‘\ﬁ“&‘,‘!"
o (3 + 5 /) /2 ‘ ;oiMpbg RECTENGLE
=1 + (1 + 5%/2)/2 | o

49

AVL: Height Proof

0 if h=—1
Theorem: Forall h >0, S(h) = 1 if h=20
Proof: By induction on h 14+SCh—1)+ S(h—2) otherwise
Base cases:

S(0)=1>¢°-1=0 S(1)=2>¢?-1~0.62

Inductive case (k > 1):

Show S(k+1) > $¥*1 — 1 assuming S(k) > ¢k — 1 and S(k-1) > pk1 -1

=1+ S(k) + S(k-1) by definition of S
1+dk—1+0pk1-1 by induction

= pk+ pF1 -1 by arithmetic (1-1=0)

=kl (p+1)—-1 by arithmetic (factor ¢px1)

= ok p2—1 by special property of ¢

= by arithmetic (add exponents)

AVL: Height

TL;DR Last few slides show:
h € O(logn)

AVL: Efficiency?

e £ind: O)
* Tree is balanced

e insert: O()
* Tree starts balanced

* Rotation is ®(1), Root->Deepest Descendant: ©(logn)
* Tree ends balanced

e buildTree: O()

e delete

* Lazy Deletion: O()
* Non-lazy Deletion: O()

AVL: Efficiency? (Soln.)

e find: ®(logn)
* Tree is balanced

* insert: O(logn)
* Tree starts balanced

* Rotation is ®(1), Root->Deepest Descendant: ©(logn)
* Tree ends balanced

* buildTree: O(nlogn)

* delete
* Lazy Deletion: @(logn)
* Non-lazy Deletion: ©(logn)

AVL: Tradeoffs

Pros:
1. All operations logarithmic worst-case because trees are always balanced

2. Height balancing adds no more than a constant factor to the speed of
insertand delete

Cons:
1. Difficult to program & debug
More space for height field
Asymptotically faster but rebalancing takes a little time

Most large searches are done in database-like systems on disk and use
other structures (e.g., B-trees)

s W N

54

Any Questions?

Timeline

* AVL Tree

* Basics, Properties, Operations

* AVL Tree 1nsert

 Single Rotation
* Double Rotation

e AVL Tree Conclusions
* Hashing

e Hash Function
e ChainingHashTable

	Untitled Section
	Slide 1: Lecture 08: AVL Trees
	Slide 2: Announcements
	Slide 3: Today
	Slide 4: AVL Tree: Data Structure
	Slide 5: AVL Tree: Is this an AVL Tree?
	Slide 6: AVL Tree: Is this an AVL Tree? (Soln.)
	Slide 7: AVL Tree: Node Visualization
	Slide 8: AVL Tree: Operations
	Slide 9: Today
	Slide 10: AVL: Data Structure
	Slide 11: AVL: Operations

	Untitled Section
	Slide 12: Today
	Slide 13: AVL: insert
	Slide 14: AVL: insert, Algorithm (finding + fixing p)
	Slide 15: AVL: insert, Only 1 p needs balancing

	Untitled Section
	Slide 16: Today
	Slide 17: AVL: insert Case 1 Left-Left Example 1
	Slide 18: AVL: insert, Left-Left Single Rotation
	Slide 19: Any Questions?
	Slide 20: AVL: insert Case 1 Left-Left Example 2
	Slide 21: AVL: insert Case 1 Left-Left Example 2 (Soln.)
	Slide 22: AVL: Single Rotation Pseudocode
	Slide 23: AVL: insert, Left-Left Single Rotation
	Slide 24: AVL: insert, Left-Left Single Rotation
	Slide 25: Any Questions?
	Slide 26: AVL: insert, Case 1 Left-Left
	Slide 27: AVL: insert, Case 4 Right-Right

	Untitled Section
	Slide 28: Today
	Slide 29: AVL: insert Case 3 Left-Right Example 1
	Slide 30: AVL: insert Left-Right Attempted Fix 1
	Slide 31: AVL: insert Left-Right Attempted Fix 2
	Slide 32: AVL: insert Left-Right Real Fix
	Slide 33: Any Questions?
	Slide 34: AVL: insert Case 3 Left-Right Example 2
	Slide 35: AVL: insert Case 3 Left-Right Example 2 (Soln.)
	Slide 36: AVL: Double Rotation Pseudocode
	Slide 37: Any Questions?
	Slide 38: AVL: insert, Case 3 Left-Right
	Slide 39: AVL: insert, Case 2 Right-Left
	Slide 42: AVL: insert.
	Slide 43
	Slide 44: Any Questions?
	Slide 45: AVL: insert Exercise: 1 2 5 3 4

	Untitled Section
	Slide 46: Today
	Slide 47
	Slide 48: AVL: The shallowness bound
	Slide 49: AVL: The Golden Ratio
	Slide 50: AVL: Height Proof
	Slide 51: AVL: Height
	Slide 52: AVL: Efficiency?
	Slide 53: AVL: Efficiency? (Soln.)
	Slide 54: AVL: Tradeoffs
	Slide 55: Any Questions?
	Slide 56: Timeline

