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Announcements

• EX 2 Due Friday

• EX 3 Due Next Monday
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Today

• Dictionary ADT

• Review: Binary Search Trees
• Trees

• Basics, Properties, Operations

• Balanced BSTs?

• AVL Tree
• Basics, Properties, Operations
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Where we are

ADTs so far:

1. Stack:   push, pop, isEmpty, etc.

2. Queue:   enqueue, dequeue, isEmpty, etc.

3. PriorityQueue:  insert, deleteMin, etc.

Next:

4. Dictionary (a.k.a. Map): Associating keys with values (k-v pairs)
• ONE OF THE MOST IMPORTANT ADTs

• Also Set
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The Dictionary (a.k.a. Map) ADT

We will tend to emphasize the keys, but don’t forget about the stored values! 6

• rea
Ruth

 Anderson

 …

• jhsia
Justin
Hsia
…

insert(rea, Ruth Anderson)

find(jhsia)

Justin Hsia,…

Data:

• Set of unique <key-value> (i.e., <k-v>) pairs

Operations:

• insert(k,v):
• places <k-v> in map 

(if k already used, overwrites existing entry <k-v> pair)

• find(k):
• returns v associated with k

• delete(k):
• returns and deletes v associated with k



Comparison: Set ADT vs. Dictionary ADT

The Set ADT is similar to a Dictionary ADT without any values

• Set: A key exists or not (no duplicates)

• Dictionary: A key has a value or not (no duplicates)

For find, insert, delete, there is little difference

• In Dictionary, values are "just along for the ride"

• So same data structure ideas work for Dictionaries and Sets
• Java HashSet implemented using a HashMap, for instance

Set ADT may have other important operations

• union, intersection, isSubset, etc.

• Notice these are binary operators on sets

• We will want different data structures to implement these operators 7



Dictionary: Applications

Any time you want to store information according to some key and be 
able to retrieve it efficiently - Dictionary is the ADT to use!

• Lots of programs do that!

• Networks:   router tables

• Operating systems: page tables

• Compilers:  symbol tables

• Databases:  dictionaries with other nice properties

• Search:   inverted indexes, phone directories, …

• Biology:   genome maps

• etc... 8



Dictionary: Primitive Data Structures
For Dictionary with 𝑛 unique k-v pairs, worst case,
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insert find delete

Unsorted Linked List Θ Θ Θ

Unsorted Array Θ Θ Θ

Sorted Linked List Θ Θ Θ

Sorted Array Θ Θ Θ



Dictionary: Primitive Data Structures (Soln.)
For Dictionary with 𝑛 unique k-v pairs, worst case,
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insert find delete

Unsorted Linked List Θ 𝑛 Θ 𝑛 Θ 𝑛

Unsorted Array Θ 𝑛 Θ 𝑛 Θ 𝑛

Sorted Linked List Θ 𝑛 Θ 𝑛 Θ 𝑛

Sorted Array Θ 𝑛 Θ log 𝑛 Θ 𝑛



Dictionary: Lazy Deletion (e.g., Sorted Array)
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10 12 24 30 41 42 44 45 50

✓  ✓ ✓ ✓ ✓  ✓ ✓

k=int, v=int

boolean "is-it-deleted"

A general technique for making delete as fast as find:
• Don't remove element (i.e., item, k-v pairs), just mark it as deleted
• No need to shift values

Advantages
• Simpler
• Can do removals later in batches
• If re-added soon after, just unmark 

the deletion

Disadvantages
• Extra space for the "is-it-deleted" flag
• Data structure full of deleted nodes 

wastes space
• find Θ log𝑚  time 
(𝑚 ≥ 𝑛, includes deleted things)
• May complicate other operations



Dictionary: Better Data Structures

1. AVL Trees
• Binary Search Trees (BST) with guaranteed balancing

2. HashTables
• Not tree-like at all

Not in this class: red-black trees, splay trees, B-Trees
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Today

• Dictionary ADT

• Review: Binary Search Trees
• Trees

• Basics, Properties, Operations

• Balanced BSTs?

• AVL Tree
• Basics, Properties, Operations
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Review: Binary Search Tree (BST) Runtime

Trees offer speed ups because of their branching factors

• Binary Search Trees are structured forms of binary search

Even a Dictionary as basic as a BST is fairly good
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BST insert find delete

Worse-Case Θ 𝑛 Θ 𝑛 Θ 𝑛

Average-Case Θ log 𝑛 Θ log 𝑛 Θ log 𝑛



Review: Binary Search
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3 4 5 7 8 9 101

find(4)



Review: Binary Tree

Binary Tree is either:

• A root (with data)

• A left subtree (maybe empty)

• A right subtree (maybe empty)

Representation:

For a dictionary, data will be a k-v pair
16

Data
Left 

Pointer
Right 

Pointer



Review: Binary Tree Numbers

Remember: Height of a Tree = Longest path from root -> deepest descendent (count # arrows)

For Binary Tree of height ℎ:

• Max # of leaves: 

• Max # of nodes: 

• Min # of leaves: 

• Min # of nodes: 
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Review: Binary Tree Numbers (Soln.)

Recall: Height of a Tree = Longest path from root -> deepest descendent (count # arrows)

For Binary Tree of height ℎ:

• Max # of leaves: 2ℎ

• Max # of nodes: 2 ℎ+1 − 1

• Min # of leaves: 1

• Min # of nodes: ℎ + 1
18



Review: Calculating Tree Height

What is the height of a tree with root root?

Running time for tree with 𝑛 nodes: 𝒪 𝑛  single pass over tree
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int treeHeight(Node root) {

    ???

}



Review: Calculating Tree Height

What is the height of a tree with root root?

Running time for tree with 𝑛 nodes: 𝒪 𝑛  single pass over tree
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int treeHeight(Node root) {
 if(root == null)
    return -1;

 return 1 + max(treeHeight(root.left),
                treeHeight(root.right));
}



Review: Binary Tree Traversals

A traversal is an order for visiting all the nodes of a tree

• Pre-order: root, left subtree, right subtree

• In-order: left subtree, root, right subtree

• Post-order: left subtree, right subtree, root
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Review: Binary Tree Traversals (Soln.)

A traversal is an order for visiting all the nodes of a tree

• Pre-order: root, left subtree, right subtree
• BCDAE

• In-order: left subtree, root, right subtree
• DCABE

• Post-order: left subtree, right subtree, root
• DACEB
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Review: More on Binary Tree Traversals

Sometimes order doesn't matter
• Sum all elements

Sometimes order matters
• Example: print tree with parent above indented children (pre-order)

• Example: evaluate an expression tree (post-order)
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void inOrderTraversal(Node root){

  if(root != null) {

    traverse(root.left);

    print(root.data);

    traverse(root.right);

  }

}

A

B

D E

C

F G



Today

• Recap: Dictionary ADT

• Review: Binary Search Trees
• Trees

• Basics, Properties, Operations

• Balanced BSTs?

• AVL Tree
• Basics, Properties, Operations
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Binary Search Tree: Data Structure

Structural Property

• Each node has ≤ 2 children 

(makes operations simple)

• Result: Simple operations

Order Property

• All keys in left subtree < node's key

• All keys in right subtree > node's key

• Result: Easy to find a key

Note: No duplicates
25
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Are these BSTs?
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Are these BSTs? (Soln.)
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BSTs: find, Recursive
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2092

155

12

307 1710

Data find(Key key, Node root){

 if(root == null)

   return null;

 if(key < root.key)

   return find(key,root.left);

 if(key > root.key)

   return find(key,root.right);

 return root.data;

}



BSTs: find, Iterative ("Harder")
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Data find(Key key, Node root){

 while(root != null 

       && root.key != key) {

  if(key < root.key)

    root = root.left;

  else(key > root.key)

    root = root.right;

 }

 if(root == null)

    return null;

 return root.data;

}

2092

155

12

307 1710



BSTs: Other "find" operations

• Find minimum node?
• Go left

• Find maximum node?
• Go right
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2092

155

12

307 1710



BSTs: insert

insert(13)

insert(8)

insert(31)

Each insert is inserting a leaf node

1. find

2. Create new (leaf) node
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BSTs: delete

How?
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BSTs: delete - Case 1: Leaf

delete(17)
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BSTs: delete - Case 2: One Child

delete(15)
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2092
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BSTs: delete - Case 3: Two Child

findMax(5.left)

swap and delete

or

findMin(5.right)

swap and delete

What can we replace 5 with?

• Largest element on the left subtree (called predecessor)

• Smallest element on the right subtree (called successor)
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BSTs: delete 

Basic Idea:

• find

• remove (which can break tree structure)

• "fix" Structure and Order

3 Cases:

1. Leaf

2. One Child

3. Two Child

36



Any Questions?
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Today

• Recap: Dictionary ADT

• Review: Binary Search Trees
• Trees
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BSTs: Balancing?

Observation

• Worst case: Θ 𝑛  (though "average" its Θ log 𝑛 )

• Shorter = better runtime (i.e., Taller = worse runtime)

Solution: Balancing

• Always ensure root height is Θ log 𝑛

• Efficient to maintain
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BSTs: Potential Balance Conditions 1

40

1. Left subtree and right subtree of 
just root same # of nodes

2. Left subtree and right subtree of 
just root same height 



BSTs: Potential Balance Conditions 1 (Soln.)
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1. Left subtree and right subtree of 
just root same # of nodes

Too Weak!

2. Left subtree and right subtree of 
just root same height 

Too Weak!



BSTs: Potential Balance Conditions 2

1. Left subtree and right subtree of 
every node same # of nodes

2. Left subtree and right subtree of 
every node same height 
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BSTs: Potential Balance Conditions 2 (Soln.)

1. Left subtree and right subtree of 
every node same # of nodes

Too Strong!

2. Left subtree and right subtree of 
every node same height 

Too Strong!

43

Only Perfect Trees Allowed :(



BSTs: AVL Balance Condition

Left subtree and right subtree of every node heights differ by at most 1

AVL Balance Property: 

balance(node)=height(node.left)-height(node.right)

For every node, −1 ≤ balance(node) ≤ 1

• Always ensure root height is Θ log 𝑛

• Efficient to maintain
• Θ 1  rotations
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Timeline

• Dictionary ADT

• Review: Binary Search Trees
• Trees

• Basics, Properties, Operations

• Balanced BSTs?

• AVL Tree
• Basics, Properties, Operations

• AVL Tree insert
• Single Rotation

• Double Rotation

• AVL Tree Conclusions 45
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