
Lecture 7: Dictionary ADT, BSTs

CSE 332: Data Structures & Parallelism

Yafqa Khan

Summer 2025

1

Announcements

• EX 2 Due Friday

• EX 3 Due Next Monday

2

Today

• Dictionary ADT

• Review: Binary Search Trees
• Trees

• Basics, Properties, Operations

• Balanced BSTs?

• AVL Tree
• Basics, Properties, Operations

3

Today

• Dictionary ADT

• Review: Binary Search Trees
• Trees

• Basics, Properties, Operations

• Balanced BSTs?

• AVL Tree
• Basics, Properties, Operations

4

Where we are

ADTs so far:

1. Stack: push, pop, isEmpty, etc.

2. Queue: enqueue, dequeue, isEmpty, etc.

3. PriorityQueue: insert, deleteMin, etc.

Next:

4. Dictionary (a.k.a. Map): Associating keys with values (k-v pairs)
• ONE OF THE MOST IMPORTANT ADTs

• Also Set

5

The Dictionary (a.k.a. Map) ADT

We will tend to emphasize the keys, but don’t forget about the stored values! 6

• rea
Ruth

 Anderson

 …

• jhsia
Justin
Hsia
…

insert(rea, Ruth Anderson)

find(jhsia)

Justin Hsia,…

Data:

• Set of unique <key-value> (i.e., <k-v>) pairs

Operations:

• insert(k,v):
• places <k-v> in map

(if k already used, overwrites existing entry <k-v> pair)

• find(k):
• returns v associated with k

• delete(k):
• returns and deletes v associated with k

Comparison: Set ADT vs. Dictionary ADT

The Set ADT is similar to a Dictionary ADT without any values

• Set: A key exists or not (no duplicates)

• Dictionary: A key has a value or not (no duplicates)

For find, insert, delete, there is little difference

• In Dictionary, values are "just along for the ride"

• So same data structure ideas work for Dictionaries and Sets
• Java HashSet implemented using a HashMap, for instance

Set ADT may have other important operations

• union, intersection, isSubset, etc.

• Notice these are binary operators on sets

• We will want different data structures to implement these operators 7

Dictionary: Applications

Any time you want to store information according to some key and be
able to retrieve it efficiently - Dictionary is the ADT to use!

• Lots of programs do that!

• Networks: router tables

• Operating systems: page tables

• Compilers: symbol tables

• Databases: dictionaries with other nice properties

• Search: inverted indexes, phone directories, …

• Biology: genome maps

• etc... 8

Dictionary: Primitive Data Structures
For Dictionary with 𝑛 unique k-v pairs, worst case,

9

insert find delete

Unsorted Linked List Θ Θ Θ

Unsorted Array Θ Θ Θ

Sorted Linked List Θ Θ Θ

Sorted Array Θ Θ Θ

Dictionary: Primitive Data Structures (Soln.)
For Dictionary with 𝑛 unique k-v pairs, worst case,

10

insert find delete

Unsorted Linked List Θ 𝑛 Θ 𝑛 Θ 𝑛

Unsorted Array Θ 𝑛 Θ 𝑛 Θ 𝑛

Sorted Linked List Θ 𝑛 Θ 𝑛 Θ 𝑛

Sorted Array Θ 𝑛 Θ log 𝑛 Θ 𝑛

Dictionary: Lazy Deletion (e.g., Sorted Array)

11

10 12 24 30 41 42 44 45 50

✓  ✓ ✓ ✓ ✓  ✓ ✓

k=int, v=int

boolean "is-it-deleted"

A general technique for making delete as fast as find:
• Don't remove element (i.e., item, k-v pairs), just mark it as deleted
• No need to shift values

Advantages
• Simpler
• Can do removals later in batches
• If re-added soon after, just unmark

the deletion

Disadvantages
• Extra space for the "is-it-deleted" flag
• Data structure full of deleted nodes

wastes space
• find Θ log𝑚 time
(𝑚 ≥ 𝑛, includes deleted things)
• May complicate other operations

Dictionary: Better Data Structures

1. AVL Trees
• Binary Search Trees (BST) with guaranteed balancing

2. HashTables
• Not tree-like at all

Not in this class: red-black trees, splay trees, B-Trees

12

Today

• Dictionary ADT

• Review: Binary Search Trees
• Trees

• Basics, Properties, Operations

• Balanced BSTs?

• AVL Tree
• Basics, Properties, Operations

13

Review: Binary Search Tree (BST) Runtime

Trees offer speed ups because of their branching factors

• Binary Search Trees are structured forms of binary search

Even a Dictionary as basic as a BST is fairly good

14

BST insert find delete

Worse-Case Θ 𝑛 Θ 𝑛 Θ 𝑛

Average-Case Θ log 𝑛 Θ log 𝑛 Θ log 𝑛

Review: Binary Search

15

3 4 5 7 8 9 101

find(4)

Review: Binary Tree

Binary Tree is either:

• A root (with data)

• A left subtree (maybe empty)

• A right subtree (maybe empty)

Representation:

For a dictionary, data will be a k-v pair
16

Data
Left

Pointer
Right

Pointer

Review: Binary Tree Numbers

Remember: Height of a Tree = Longest path from root -> deepest descendent (count # arrows)

For Binary Tree of height ℎ:

• Max # of leaves:

• Max # of nodes:

• Min # of leaves:

• Min # of nodes:

17

Review: Binary Tree Numbers (Soln.)

Recall: Height of a Tree = Longest path from root -> deepest descendent (count # arrows)

For Binary Tree of height ℎ:

• Max # of leaves: 2ℎ

• Max # of nodes: 2 ℎ+1 − 1

• Min # of leaves: 1

• Min # of nodes: ℎ + 1
18

Review: Calculating Tree Height

What is the height of a tree with root root?

Running time for tree with 𝑛 nodes: 𝒪 𝑛 single pass over tree

19

int treeHeight(Node root) {

 ???

}

Review: Calculating Tree Height

What is the height of a tree with root root?

Running time for tree with 𝑛 nodes: 𝒪 𝑛 single pass over tree

20

int treeHeight(Node root) {
 if(root == null)
 return -1;

 return 1 + max(treeHeight(root.left),
 treeHeight(root.right));
}

Review: Binary Tree Traversals

A traversal is an order for visiting all the nodes of a tree

• Pre-order: root, left subtree, right subtree

• In-order: left subtree, root, right subtree

• Post-order: left subtree, right subtree, root

21

B

C

D A

E

Review: Binary Tree Traversals (Soln.)

A traversal is an order for visiting all the nodes of a tree

• Pre-order: root, left subtree, right subtree
• BCDAE

• In-order: left subtree, root, right subtree
• DCABE

• Post-order: left subtree, right subtree, root
• DACEB

22

B

C

D A

E

Review: More on Binary Tree Traversals

Sometimes order doesn't matter
• Sum all elements

Sometimes order matters
• Example: print tree with parent above indented children (pre-order)

• Example: evaluate an expression tree (post-order)
23

void inOrderTraversal(Node root){

 if(root != null) {

 traverse(root.left);

 print(root.data);

 traverse(root.right);

 }

}

A

B

D E

C

F G

Today

• Recap: Dictionary ADT

• Review: Binary Search Trees
• Trees

• Basics, Properties, Operations

• Balanced BSTs?

• AVL Tree
• Basics, Properties, Operations

24

Binary Search Tree: Data Structure

Structural Property

• Each node has ≤ 2 children

(makes operations simple)

• Result: Simple operations

Order Property

• All keys in left subtree < node's key

• All keys in right subtree > node's key

• Result: Easy to find a key

Note: No duplicates
25

4

121062

115

8

14

13

7 9

Are these BSTs?

26

3

1171

84

5

4

181062

115

8

20

21

7

15

Are these BSTs? (Soln.)

27

3

1171

84

5

4

181062

115

8

20

21

7

15

Yes No

BSTs: find, Recursive

28

2092

155

12

307 1710

Data find(Key key, Node root){

 if(root == null)

 return null;

 if(key < root.key)

 return find(key,root.left);

 if(key > root.key)

 return find(key,root.right);

 return root.data;

}

BSTs: find, Iterative ("Harder")

29

Data find(Key key, Node root){

 while(root != null

 && root.key != key) {

 if(key < root.key)

 root = root.left;

 else(key > root.key)

 root = root.right;

 }

 if(root == null)

 return null;

 return root.data;

}

2092

155

12

307 1710

BSTs: Other "find" operations

• Find minimum node?
• Go left

• Find maximum node?
• Go right

30

2092

155

12

307 1710

BSTs: insert

insert(13)

insert(8)

insert(31)

Each insert is inserting a leaf node

1. find

2. Create new (leaf) node

31

2092

155

12

307 1710

BSTs: delete

How?

32

2092

155

12

307 1710

BSTs: delete - Case 1: Leaf

delete(17)

33

2092

155

12

307 1710

BSTs: delete - Case 2: One Child

delete(15)

34

2092

155

12

307 1710

BSTs: delete - Case 3: Two Child

findMax(5.left)

swap and delete

or

findMin(5.right)

swap and delete

What can we replace 5 with?

• Largest element on the left subtree (called predecessor)

• Smallest element on the right subtree (called successor)

35

2092

155

12

307 1710

BSTs: delete

Basic Idea:

• find

• remove (which can break tree structure)

• "fix" Structure and Order

3 Cases:

1. Leaf

2. One Child

3. Two Child

36

Any Questions?

37

Today

• Recap: Dictionary ADT

• Review: Binary Search Trees
• Trees

• Basics, Properties, Operations

• Balanced BSTs?

• AVL Tree
• Basics, Properties, Operations

38

BSTs: Balancing?

Observation

• Worst case: Θ 𝑛 (though "average" its Θ log 𝑛)

• Shorter = better runtime (i.e., Taller = worse runtime)

Solution: Balancing

• Always ensure root height is Θ log 𝑛

• Efficient to maintain

39

BSTs: Potential Balance Conditions 1

40

1. Left subtree and right subtree of
just root same # of nodes

2. Left subtree and right subtree of
just root same height

BSTs: Potential Balance Conditions 1 (Soln.)

41

1. Left subtree and right subtree of
just root same # of nodes

Too Weak!

2. Left subtree and right subtree of
just root same height

Too Weak!

BSTs: Potential Balance Conditions 2

1. Left subtree and right subtree of
every node same # of nodes

2. Left subtree and right subtree of
every node same height

42

BSTs: Potential Balance Conditions 2 (Soln.)

1. Left subtree and right subtree of
every node same # of nodes

Too Strong!

2. Left subtree and right subtree of
every node same height

Too Strong!

43

Only Perfect Trees Allowed :(

BSTs: AVL Balance Condition

Left subtree and right subtree of every node heights differ by at most 1

AVL Balance Property:

balance(node)=height(node.left)-height(node.right)

For every node, −1 ≤ balance(node) ≤ 1

• Always ensure root height is Θ log 𝑛

• Efficient to maintain
• Θ 1 rotations

44

Timeline

• Dictionary ADT

• Review: Binary Search Trees
• Trees

• Basics, Properties, Operations

• Balanced BSTs?

• AVL Tree
• Basics, Properties, Operations

• AVL Tree insert
• Single Rotation

• Double Rotation

• AVL Tree Conclusions 45

	Untitled Section
	Slide 1: Lecture 7: Dictionary ADT, BSTs
	Slide 2: Announcements

	Untitled Section
	Slide 3: Today
	Slide 4: Today
	Slide 5: Where we are
	Slide 6: The Dictionary (a.k.a. Map) ADT
	Slide 7: Comparison: Set ADT vs. Dictionary ADT
	Slide 8: Dictionary: Applications
	Slide 9: Dictionary: Primitive Data Structures
	Slide 10: Dictionary: Primitive Data Structures (Soln.)
	Slide 11: Dictionary: Lazy Deletion (e.g., Sorted Array)
	Slide 12: Dictionary: Better Data Structures
	Slide 13: Today
	Slide 14: Review: Binary Search Tree (BST) Runtime
	Slide 15: Review: Binary Search
	Slide 16: Review: Binary Tree
	Slide 17: Review: Binary Tree Numbers
	Slide 18: Review: Binary Tree Numbers (Soln.)
	Slide 19: Review: Calculating Tree Height
	Slide 20: Review: Calculating Tree Height
	Slide 21: Review: Binary Tree Traversals
	Slide 22: Review: Binary Tree Traversals (Soln.)
	Slide 23: Review: More on Binary Tree Traversals
	Slide 24: Today
	Slide 25: Binary Search Tree: Data Structure
	Slide 26: Are these BSTs?
	Slide 27: Are these BSTs? (Soln.)
	Slide 28: BSTs: find, Recursive
	Slide 29: BSTs: find, Iterative ("Harder")
	Slide 30: BSTs: Other "find" operations
	Slide 31: BSTs: insert
	Slide 32: BSTs: delete
	Slide 33: BSTs: delete - Case 1: Leaf
	Slide 34: BSTs: delete - Case 2: One Child
	Slide 35: BSTs: delete - Case 3: Two Child
	Slide 36: BSTs: delete
	Slide 37: Any Questions?
	Slide 38: Today
	Slide 39: BSTs: Balancing?
	Slide 40: BSTs: Potential Balance Conditions 1
	Slide 41: BSTs: Potential Balance Conditions 1 (Soln.)
	Slide 42: BSTs: Potential Balance Conditions 2
	Slide 43: BSTs: Potential Balance Conditions 2 (Soln.)
	Slide 44: BSTs: AVL Balance Condition
	Slide 45: Timeline

