Lecture 6: Recurrences

CSE 332: Data Structures & Parallelism

Yafqa Khan

Summer 2025

Announcements

- EX 1 Due Today
- EX 2 Due Friday
- EX 3 Released Today
- Exam 1 Week 5 (Friday)

Today

- Asymptotic Analysis: Recursion
 - Writing a Recurrence Relation
 - Solving a Recurrence Relation 1: Unrolling
 - Solving a Recurrence Relation 2: Tree Method

Recap: Counting code constructs

Assume basic operations take some amount of constant time

• Arithmetic (1+1), assignment (int b = 3), array index(arr[i]), etc.

This approximates reality: a very useful "lie"

Code Construct	How much Time?
Consecutive Statements	Sum of time of each statement
Loops	Sum of loop body iterations
Conditionals	Time of condition + executed branch
Function (method) Calls	Time of function's body
Recursion	Solve recurrence equation

Counting Recursive Code

- 0 ... n
- Very interesting with recursive code
- Analogy: Perform some computation recursively on a list of size n
 - Each recursive method call:
 - Perform some **Non-Recursive work** w(n)
 - Call the method T(n) with a smaller part of the list T(n-1)
 - Base Case: **base case work** b(n)
- So, if we do w(n) work per step and use a smaller list with 1 less element, we do total work:
 - T(n) = w(n) + T(n-1)
- Eventually base case with 1 element that does base case work b(n)
 T(1) = b(n)

Recurrence: Terminology

Terminology	Recurrence Function/Relation	General formula	Closed form	
Definition	Piecewise function that mathematically models the runtime of a recursive algorithm (might want to define constants)	Function written as the number of expansion <i>i</i> and recurrence function (might have summations)	General formula evaluated without recurrence function or summations (force them to be in terms of constants or <i>n</i>)	
Example	$T(n) = \begin{cases} c_0 & \text{for } n = 1\\ T\left(\frac{n}{2}\right) + c_1 & \text{otherwise} \end{cases}$	$T(n) = T\left(\frac{n}{2^i}\right) + i \cdot c_1$	Let $i = \log n$, $T(n) = T\left(\frac{n}{2^{\log n}}\right) + \log n \cdot c_1$ $= T(1) + \log n \cdot c_1$ $= c_0 + \log n \cdot c_1$	

Writing a Recurrence Function/Relation

```
int sum(int[]arr,int n) {
    if(n==0)
        return arr[n];
    return arr[n] + sum(arr,n-1);
}
```

Q: How can we count sum(arr, arr.length);?

A: By using recursive formulas (called recurrence function/relation)!

- 1. Base Case Work
- 2. Non-Recursive Work + Recursive Work

Today

- Asymptotic Analysis: Recursive
 - Writing a Recurrence Relation
 - Solving a Recurrence Relation 1: Unrolling
 - Solving a Recurrence Relation 2: Tree Method

Solving Recurrence 1: Unrolling

1. Write a Recurrence

2. Find General Formula

$$T(n) = \begin{cases} c_0, & \text{for } n = 1\\ c_1 + T(n-1), & \text{otherwise} \end{cases}$$

1. Expand:

$$T(n) = c_1 + T(n-1)$$

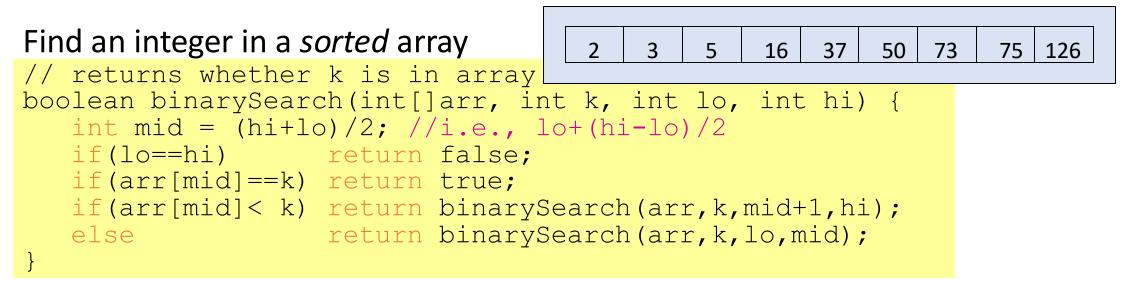
 $= c_1 + (c_1 + T((n-1) - 1)) = c_1 + c_1 + T(n-2)$
 $= c_1 + c_1 + (c_1 + T((n-2) - 1)) = c_1 + c_1 + c_1 + T(n-3)$
 $= \cdots$
 $= c_1 i + T(n - i)$

- 3. Find Closed Form
 - 1. Find when the base case occurs
 - When n i = 1 (i.e., i = n 1)
 - 2. Get to the base case

 $T(n) = c_1(n-1) + T(1) = c_1n - c_1 + c_0$

4. Asymptotic Analysis $T(n) \in \Theta(n)$

Unrolling: Example, Binary Search



Q: Cost of binarySearch(arr, k, 0, arr.length);?

1. Write a Recurrence

T(n) =

Unrolling: Example

2. Find General Formula

• Expand:

$$T(n) = c_1 + T\left(\frac{n}{2}\right)$$

$$=$$

$$=$$

$$=$$

- 3. Find Closed Form
 - Find when the base case occurs
 - Get to the base case T(n) =

1. Write a Recurrence $T(n) = \begin{cases} c_0, & \text{for } n = 1 \\ c_1 + T\left(\frac{n}{2}\right), & \text{otherwise} \end{cases}$

4. Finding Big-Theta
$$T(n) \in \Theta()$$

Unrolling: Example (Soln.)

2. Find General Formula

• Expand:

$$T(n) = c_1 + T\left(\frac{n}{2}\right)$$

$$= c_1 + \left(c_1 + T\left(\frac{n}{2}\right)\right) = c_1 + c_1 + T\left(\frac{n}{4}\right)$$

$$= \dots = c_1 i + T\left(\frac{n}{2^i}\right)$$

1. Write a Recurrence

$$T(n) = \begin{cases} c_0, & \text{for } n = 1 \\ c_1 + T\left(\frac{n}{2}\right), & \text{otherwise} \end{cases}$$

$$= c_1 + c_1 + \left(c_1 + T\left(\frac{\frac{n}{4}}{2}\right)\right) = c_1 + c_1 + c_1 + T\left(\frac{n}{8}\right)$$

- 3. Find Closed Form
 - Find when the base case occurs
 - When $\frac{n}{2^{i}} = 1$ (i.e., $i = \log n$)
 - Get to the base case

4. Finding Big-Theta $T(n) \in \Theta()$

 $T(n) = c_1 i + T\left(\frac{n}{2^i}\right) = c_1 \log n + T(1) = c_1 \log n + c_0$

Iterative vs Recursive: sum()

- lterative sum():
 - "Obviously" linear

```
int sum(int[] arr){
    int ans = 0;
    for(int i=0; i<arr.length; ++i)
        ans += arr[i];
    return ans;
}</pre>
```

- Recursive sum():
 - Recurrence is $c_1 + c_1 + \dots + c_1 + c_0$ for n times so linear

```
int sum(int[]arr,int n) {
    if(n==0)
        return arr[n];
    return arr[n] + sum(arr,n-1);
}
```

Recap: Algorithm Analysis of Recursive Code

- Writing Recurrences (i.e., count recursive code)
 - 1. Split to Cases
 - Base Case: Base Case Work (e.g., $T(1) = c_0$)
 - Recursive Case: Non-Recursive + Recursive Work (e.g., $T(n) = c_1 + T\left(\frac{n}{2}\right)$)
- Solving Recurrences (e.g., specifically with Unrolling here)
 - 2. Find General Formula
 - Expand by substitution until pattern emerges (e.g., $T(n) = \cdots = c_1 i + T\left(\frac{n}{2^i}\right)$
 - 3. Find Closed Form
 - Find when the base case occurs (e.g., when $T\left(\frac{n}{2^i}\right)$ = base case = T(1) (i.e., $\frac{n}{2^i} = 1$ or $i = \log n$))
 - Get to the base case (e.g., Substitute $i = \log n$ to $T(n) = c_1 i + T\left(\frac{n}{2^i}\right) = c_1 \log n + T(1) = c_1 \log n + c_0$)
- Asymptotic Analysis or Finding Big-Theta (e.g., informally as here)
 - 4. $T(n) = \frac{c_{\pm} \log n}{c_{\pm}} \in \Theta(\log n)$

boolean binarySearch(int[]arr, int k, int lo, int hi) {
 int mid = (hi+lo)/2;
 if(lo==hi) return false;
 if(arr[mid]==k) return true;
 if(arr[mid]< k) return binarySearch(arr,k,mid+1,hi);
 else return binarySearch(arr,k,lo,mid);</pre>

Iterative vs Recursive: sum()

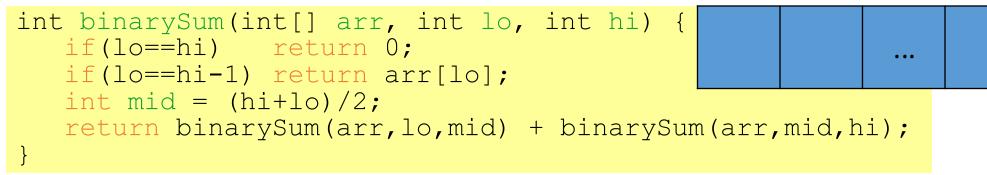
- Iterative:
 - "Obviously" linear

```
int sum(int[] arr){
    int ans = 0;
    for(int i=0; i<arr.length; ++i)
        ans += arr[i];
    return ans;
}</pre>
```

- Recursive:
 - Recurrence is $c_1 + c_1 + \dots + c_1 + c_0$ for n times so linear

```
int sum(int[]arr,int n) {
    if(n==0)
        return arr[n];
    return arr[n] + sum(arr,n-1);
}
```

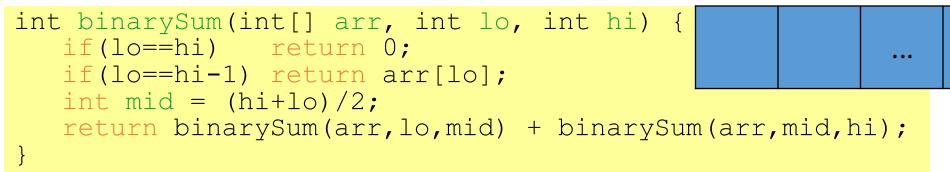
sum but weird (binarySum)



- Q: How can we count binarySum(arr, arr.length);?
- 1. Write a Recurrence

$$T(n) = \left\{$$

sum but weird (binarySum)



Q: How can we count binarySum(arr, arr.length);?

1. Write a Recurrence

$$T(n) = \begin{cases} c_0, & \text{for } n = 1\\ c_1 + 2T\left(\frac{n}{2}\right), & \text{otherwise} \end{cases}$$

How to solve? Good luck doing Unrolling

2. Find General Formula: Draw Tree

- 1. Initialize Table
- 2. Draw Actual Tree
- 3. Misc. Details
 - Recursive Calls, # Nodes, Sum Work, etc.
- 4. Base Case
 - Find when the base case occurs

5. Work Calculation

- 1. Total Base Case Work
- 2. Total Non-Recursive + Recursive Work

1. Write a Recurrence

$$T(n) = \begin{cases} c_0, & \text{for } n = 1 \\ c_1 + 2T\left(\frac{n}{2}\right), & \text{otherwise} \end{cases}$$

2. Draw Tree

1. Write a Recurrence $T(n) = \begin{cases} c_0, & \text{for } n = 1 \\ c_1 + 2T\left(\frac{n}{2}\right), & \text{otherwise} \end{cases}$

i	Recursive Call	# Nodes	Tree	Sum Work
0	T(n)			
1				
2				
÷	:	:		
i			+	

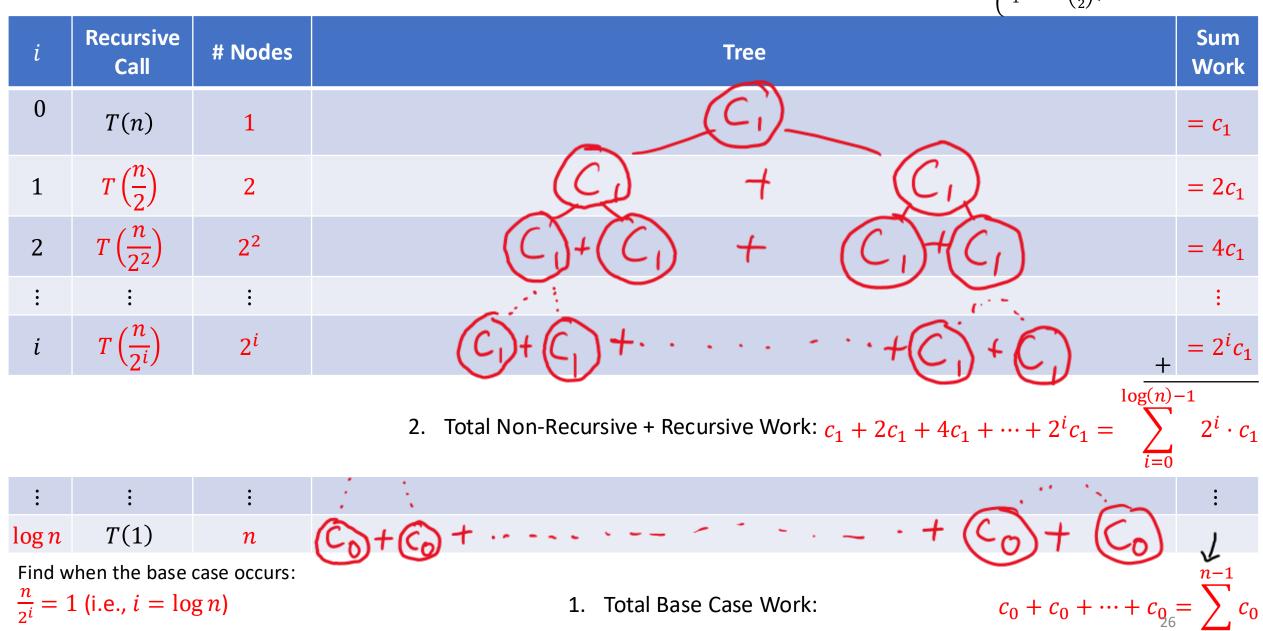
2. Total Non-Recursive + Recursive Work:

Find when the base case occurs:

2. Draw Tree (Soln.)

1. Write a Recurrence $T(n) = \begin{cases} c_0, \\ c_1 + 2T\left(\frac{n}{2}\right), \end{cases}$

for n = 1, otherwise



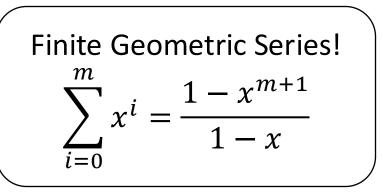
Solving Recurrence 2: Tree Method

2. Find General Formula

T(n) = Total Base Case Work + (Total Total Non-Recursive+Recursive Work) =

- 3. Find Closed Form T(n) =
 - =

 - =



4. Finding Big-Theta $T(n) \in \Theta()$

Solving Recurrence 2: Tree Method (Soln.)

2. Find General Formula

T(n) = Total Base Case Work + (Total Non-Recursive + Recursive Work)

 $2^i \cdot c_1$

$$=\sum_{i=0}^{n-1} c_0 + \sum_{i=0}^{\log(n)-1}$$

3. Find Closed Form $T(n) = c_0 n + c_1 \left(\frac{1 - 2^{\log n - 1 + 1}}{1 - 2} \right)$ $= c_0 n + c_1 (2^{\log n} - 1)$ $= c_0 n + c_1 (n - 1)$ $= (c_0 + c_1)n - c_1$

Finite Geometric Series!

$$\sum_{i=0}^{m} x^{i} = \frac{1 - x^{m+1}}{1 - x}$$

4. Finding Big-Theta $T(n) \in \Theta(n)$

Common Recurrences (Memorize!)

Common Recurrence Function/Relation	Order of Growth	Example
$T(n) = T\left(\frac{n}{2}\right) + c$	$\in \Theta(\log n)$	Binary Search
$T(n) = 2T\left(\frac{n}{2}\right) + n$	$\in \Theta(n \log n)$	Merge Sort
$T(n) = T\left(\frac{n}{2}\right) + n$	$\in \Theta(n)$	
$T(n) = 2T\left(\frac{n}{2}\right) + c$	$\in \Theta(n)$	Recursive "binary" sum
T(n) = T(n-1) + c	$\in \Theta(n)$	Recursive sum
T(n) = T(n-1) + n	$\in \Theta(n^2)$	
T(n) = 2T(n-1) + c	$\in \Theta(2^n)$	

Timeline

- Asymptotic Analysis: Recursive
 - Writing a Recurrence Relation
 - Solving a Recurrence Relation 1: Unrolling
 - Solving a Recurrence Relation 2: Tree Method
- Dictionary ADT
- Review: Binary Search Trees
 - Trees
 - Basics, Properties, Operations