
Lecture 6:
Recurrences

CSE 332: Data Structures & Parallelism

Yafqa Khan

Summer 2025

1

Announcements

• EX 1 Due Today

• EX 2 Due Friday

• EX 3 Released Today

• Exam 1 Week 5 (Friday)

2

Today

• Asymptotic Analysis: Recursion
• Writing a Recurrence Relation

• Solving a Recurrence Relation 1: Unrolling

• Solving a Recurrence Relation 2: Tree Method

3

Recap: Counting code constructs
Assume basic operations take some amount of constant time

• Arithmetic (1+1), assignment (int b = 3), array index(arr[i]), etc.

This approximates reality: a very useful "lie"

4

Code Construct How much Time?

Consecutive Statements Sum of time of each statement

Loops Sum of loop body iterations

Conditionals Time of condition + executed branch

Function (method) Calls Time of function’s body

Recursion Solve recurrence equation

Counting Recursive Code

• Very interesting with recursive code

• Analogy: Perform some computation recursively on a list of size 𝑛
• Each recursive method call:

• Perform some Non-Recursive work 𝑤 𝑛
• Call the method 𝑇 𝑛 with a smaller part of the list 𝑇 𝑛 − 1

• Base Case: base case work 𝑏 𝑛

• So, if we do 𝑤 𝑛 work per step and use a smaller list with 1 less
element, we do total work:
• 𝑇 𝑛 = 𝑤 𝑛 + 𝑇 𝑛 − 1

• Eventually base case with 1 element that does base case work 𝑏 𝑛
• 𝑇 1 = 𝑏 𝑛

5

...

𝑛0

Recurrence: Terminology

Terminology Recurrence Function/Relation General formula Closed form

Definition

Piecewise function that
mathematically models the runtime
of a recursive algorithm

(might want to define constants)

Function written as the
number of expansion 𝑖
and recurrence function

(might have summations)

General formula evaluated
without recurrence function
or summations

(force them to be in terms of
constants or 𝑛)

Example 𝑇 𝑛 = ቐ

𝑐0

𝑇
𝑛

2
+ 𝑐1

for 𝑛 = 1
otherwise

𝑇 𝑛 = 𝑇
𝑛

2𝑖
+ 𝑖 ⋅ 𝑐1

Let 𝑖 = log 𝑛,

𝑇 𝑛 = 𝑇
𝑛

2log 𝑛
+ log 𝑛 ⋅ 𝑐1

= 𝑇 1 + log 𝑛 ⋅ 𝑐1

= 𝒄𝟎 + 𝐥𝐨𝐠 𝒏 ⋅ 𝒄𝟏

6

Writing a Recurrence Function/Relation

Q: How can we count sum(arr,arr.length);?

A: By using recursive formulas (called recurrence function/relation)!
1. Base Case Work

2. Non-Recursive Work + Recursive Work

int sum(int[]arr,int n) {
 if(n==0)
 return arr[n];
 return arr[n] + sum(arr,n-1);
}

7

Any Questions?

9

Today

• Asymptotic Analysis: Recursive
• Writing a Recurrence Relation

• Solving a Recurrence Relation 1: Unrolling

• Solving a Recurrence Relation 2: Tree Method

10

Solving Recurrence 1: Unrolling

2. Find General Formula
1. Expand:

𝑇 𝑛 = 𝑐1 + 𝑇 𝑛 − 1

= 𝑐1 + 𝑐1 + 𝑇 𝑛 − 1 − 1 = 𝑐1 + 𝑐1 + 𝑇 𝑛 − 2

= 𝑐1 + 𝑐1 + 𝑐1 + 𝑇 𝑛 − 2 − 1 = 𝑐1 + 𝑐1 + 𝑐1 + 𝑇 𝑛 − 3

= ⋯
= 𝒄𝟏𝒊 + 𝑻 𝒏 − 𝒊

3. Find Closed Form
1. Find when the base case occurs

• When 𝑛 − 𝑖 = 1 (i.e., 𝑖 = 𝑛 − 1)

2. Get to the base case

 𝑇 𝑛 = 𝑐1 𝑛 − 1 + 𝑇 1 = 𝒄𝟏𝒏 − 𝒄𝟏 + 𝒄𝟎

4. Asymptotic Analysis
𝑇 𝑛 ∈ Θ 𝑛

1. Write a Recurrence

𝑇 𝑛 = ቊ
𝑐0,

𝑐1 + 𝑇 𝑛 − 1 ,
for 𝑛 = 1
otherwise

11

Any Questions?

12

Unrolling: Example, Binary Search
Find an integer in a sorted array
// returns whether k is in array
boolean binarySearch(int[]arr, int k, int lo, int hi) {
 int mid = (hi+lo)/2; //i.e., lo+(hi-lo)/2
 if(lo==hi) return false;
 if(arr[mid]==k) return true;
 if(arr[mid]< k) return binarySearch(arr,k,mid+1,hi);
 else return binarySearch(arr,k,lo,mid);
}

2 3 5 16 37 50 73 75 126

Q: Cost of binarySearch(arr,k,0,arr.length);?

1. Write a Recurrence

𝑇 𝑛 = ቊ

13

Unrolling: Example

2. Find General Formula
• Expand:

𝑇 𝑛 = 𝑐1 + 𝑇
𝑛

2
=
=
=

3. Find Closed Form
• Find when the base case occurs

• Get to the base case
 𝑇 𝑛 =

15

1. Write a Recurrence

𝑇 𝑛 = ൝
𝑐0,

𝑐1 + 𝑇
𝑛

2
,

for 𝑛 = 1
otherwise

4. Finding Big-Theta
𝑇 𝑛 ∈ Θ

Unrolling: Example (Soln.)

2. Find General Formula
• Expand:

𝑇 𝑛 = 𝑐1 + 𝑇
𝑛

2

= 𝑐1 + 𝑐1 + 𝑇
𝑛

2

2
= 𝑐1 + 𝑐1 + 𝑇

𝑛

4
 = 𝑐1 + 𝑐1 + 𝑐1 + 𝑇

𝑛

4

2
= 𝑐1 + 𝑐1 + 𝑐1 + 𝑇

𝑛

8

= ⋯ = 𝑐1𝑖 + 𝑇
𝑛

2𝑖

3. Find Closed Form
• Find when the base case occurs

• When
𝑛

2𝑖 = 1 (i.e., 𝑖 = log 𝑛)

• Get to the base case

 𝑇 𝑛 = 𝑐1𝑖 + 𝑇
𝑛

2𝑖 = 𝑐1 log 𝑛 + 𝑇 1 = 𝑐1 log 𝑛 + 𝑐0
16

1. Write a Recurrence

𝑇 𝑛 = ൝
𝑐0,

𝑐1 + 𝑇
𝑛

2
,

for 𝑛 = 1
otherwise

4. Finding Big-Theta
𝑇 𝑛 ∈ Θ

Iterative vs Recursive: sum()

• Iterative sum():
• "Obviously" linear

• Recursive sum():
• Recurrence is 𝑐1 + 𝑐1 + ⋯ + 𝑐1 + 𝑐0 for 𝑛 times so linear

17

int sum(int[]arr,int n) {
 if(n==0)
 return arr[n];
 return arr[n] + sum(arr,n-1);
}

int sum(int[] arr){
 int ans = 0;
 for(int i=0; i<arr.length; ++i)
 ans += arr[i];
 return ans;
}

Any Questions?

18

Recap: Algorithm Analysis of Recursive Code

• Writing Recurrences (i.e., count recursive code)
1. Split to Cases

• Base Case: Base Case Work (e.g., 𝑇 1 = 𝑐0)

• Recursive Case: Non-Recursive + Recursive Work (e.g., 𝑇 𝑛 = 𝑐1 + 𝑇
𝑛

2
)

• Solving Recurrences (e.g., specifically with Unrolling here)

2. Find General Formula

• Expand by substitution until pattern emerges (e.g., 𝑇 𝑛 = ⋯ = 𝑐1𝑖 + 𝑇
𝑛

2𝑖

3. Find Closed Form

• Find when the base case occurs (e.g., when 𝑇
𝑛

2𝑖 = base case = 𝑇 1 (i.e.,
𝑛

2𝑖 = 1 or 𝑖 = log 𝑛))

• Get to the base case (e.g., Substitute 𝑖 = log 𝑛 to 𝑇 𝑛 = 𝑐1𝑖 + 𝑇
𝑛

2𝑖 = 𝑐1 log 𝑛 + 𝑇 1 = 𝑐1 log 𝑛 + 𝑐0)

• Asymptotic Analysis or Finding Big-Theta (e.g., informally as here)
4. 𝑇 𝑛 = 𝑐1 log 𝑛 + 𝑐0 ∈ Θ log 𝑛

19

boolean binarySearch(int[]arr, int k, int lo, int hi) {

 int mid = (hi+lo)/2;

 if(lo==hi) return false;

 if(arr[mid]==k) return true;

 if(arr[mid]< k) return binarySearch(arr,k,mid+1,hi);

 else return binarySearch(arr,k,lo,mid);

}

Any Questions?

20

Iterative vs Recursive: sum()

• Iterative:
• "Obviously" linear

• Recursive:
• Recurrence is 𝑐1 + 𝑐1 + ⋯ + 𝑐1 + 𝑐0 for 𝑛 times so linear

21

int sum(int[]arr,int n) {
 if(n==0)
 return arr[n];
 return arr[n] + sum(arr,n-1);
}

int sum(int[] arr){
 int ans = 0;
 for(int i=0; i<arr.length; ++i)
 ans += arr[i];
 return ans;
}

sum but weird (binarySum)

Q: How can we count binarySum(arr,arr.length);?

1. Write a Recurrence

 𝑇 𝑛 = ቊ

int binarySum(int[] arr, int lo, int hi) {
 if(lo==hi) return 0;
 if(lo==hi-1) return arr[lo];
 int mid = (hi+lo)/2;
 return binarySum(arr,lo,mid) + binarySum(arr,mid,hi);
}

22

...

sum but weird (binarySum)

Q: How can we count binarySum(arr,arr.length);?

1. Write a Recurrence

 𝑇 𝑛 = ቐ
𝑐0, for 𝑛 = 1

𝑐1 + 2𝑇
𝑛

2
, otherwise

How to solve? Good luck doing Unrolling

int binarySum(int[] arr, int lo, int hi) {
 if(lo==hi) return 0;
 if(lo==hi-1) return arr[lo];
 int mid = (hi+lo)/2;
 return binarySum(arr,lo,mid) + binarySum(arr,mid,hi);
}

23

...

2. Find General Formula: Draw Tree

1. Initialize Table

2. Draw Actual Tree

3. Misc. Details
• Recursive Calls, # Nodes, Sum Work, etc.

4. Base Case
• Find when the base case occurs

5. Work Calculation
1. Total Base Case Work

2. Total Non-Recursive + Recursive Work

24

1. Write a Recurrence

𝑇 𝑛 = ቐ
𝑐0, for 𝑛 = 1

𝑐1 + 2𝑇
𝑛

2
, otherwise

2. Draw Tree
𝑖

Recursive
Call

Nodes Tree
Sum
Work

0
𝑇 𝑛

1

2

⋮ ⋮ ⋮

𝑖

2. Total Non-Recursive + Recursive Work:

⋮ ⋮ ⋮ ⋮

𝑇 1

Find when the base case occurs:

1. Total Base Case Work:

+

1. Write a Recurrence 𝑇 𝑛 = ቐ
𝑐0, for 𝑛 = 1

𝑐1 + 2𝑇
𝑛

2
, otherwise

25

𝑖
Recursive

Call
Nodes Tree

Sum
Work

0
𝑇 𝑛 1 = 𝑐1

1 𝑇
𝑛

2
2 = 2𝑐1

2 𝑇
𝑛

22 22 = 4𝑐1

⋮ ⋮ ⋮ ⋮

𝑖 𝑇
𝑛

2𝑖 2𝑖 = 2𝑖𝑐1

2. Total Non-Recursive + Recursive Work: 𝑐1 + 2𝑐1 + 4𝑐1 + ⋯ + 2𝑖𝑐1 =

𝑖=0

log 𝑛 −1

2𝑖 ⋅ 𝑐1

⋮ ⋮ ⋮ ⋮

log 𝑛 𝑇 1 𝑛

Find when the base case occurs:
𝑛

2𝑖 = 1 (i.e., 𝑖 = log 𝑛) 1. Total Base Case Work: 𝑐0 + 𝑐0 + ⋯ + 𝑐0 =

𝑖=0

𝑛−1

𝑐0

+

2. Draw Tree (Soln.)

26

1. Write a Recurrence 𝑇 𝑛 = ቐ
𝑐0, for 𝑛 = 1

𝑐1 + 2𝑇
𝑛

2
, otherwise

Any Questions?

27

Solving Recurrence 2: Tree Method

2. Find General Formula

𝑇 𝑛 = Total Base Case Work + Total Total Non−Recursive+Recursive Work
=

3. Find Closed Form
𝑇 𝑛 =

=
=
=

Finite Geometric Series!

𝑖=0

𝑚

𝑥𝑖 =
1 − 𝑥𝑚+1

1 − 𝑥

28

4. Finding Big-Theta
𝑇 𝑛 ∈ Θ

Solving Recurrence 2: Tree Method (Soln.)

2. Find General Formula

𝑇 𝑛 = Total Base Case Work + Total Non−Recursive+Recursive Work

=

𝑖=0

𝑛−1

𝑐0 +

𝑖=0

log 𝑛 −1

2𝑖 ⋅ 𝑐1

3. Find Closed Form

𝑇 𝑛 = 𝑐0𝑛 + 𝑐1

1 − 2log 𝑛−1+1

1 − 2

= 𝑐0𝑛 + 𝑐1 2log 𝑛 − 1

= 𝑐0𝑛 + 𝑐1 𝑛 − 1

= 𝑐0 + 𝑐1 𝑛 − 𝑐1

29

Finite Geometric Series!

𝑖=0

𝑚

𝑥𝑖 =
1 − 𝑥𝑚+1

1 − 𝑥

4. Finding Big-Theta
𝑇 𝑛 ∈ Θ 𝑛

Any Questions?

30

Common Recurrences (Memorize!)

Common Recurrence
Function/Relation

Order of Growth Example

𝑇 𝑛 = 𝑇
𝑛

2
+ 𝑐 ∈ Θ log 𝑛 Binary Search

𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑛 ∈ Θ 𝑛 log 𝑛 Merge Sort

𝑇 𝑛 = 𝑇
𝑛

2
+ 𝑛 ∈ Θ 𝑛

𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑐 ∈ Θ 𝑛 Recursive "binary" sum

𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑐 ∈ Θ 𝑛 Recursive sum

𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑛 ∈ Θ 𝑛2

𝑇 𝑛 = 2𝑇 𝑛 − 1 + 𝑐 ∈ Θ 2𝑛

31

Any Questions?

32

Timeline

• Asymptotic Analysis: Recursive
• Writing a Recurrence Relation

• Solving a Recurrence Relation 1: Unrolling

• Solving a Recurrence Relation 2: Tree Method

• Dictionary ADT

• Review: Binary Search Trees
• Trees

• Basics, Properties, Operations

33

	Untitled Section
	Slide 1: Lecture 6: Recurrences
	Slide 2: Announcements
	Slide 3: Today

	Untitled Section
	Slide 4: Recap: Counting code constructs
	Slide 5: Counting Recursive Code
	Slide 6: Recurrence: Terminology
	Slide 7: Writing a Recurrence Function/Relation
	Slide 9: Any Questions?

	Untitled Section
	Slide 10: Today
	Slide 11: Solving Recurrence 1: Unrolling
	Slide 12: Any Questions?
	Slide 13: Unrolling: Example, Binary Search
	Slide 15: Unrolling: Example
	Slide 16: Unrolling: Example (Soln.)
	Slide 17: Iterative vs Recursive: sum()
	Slide 18: Any Questions?

	Untitled Section
	Slide 19: Recap: Algorithm Analysis of Recursive Code
	Slide 20: Any Questions?
	Slide 21: Iterative vs Recursive: sum()
	Slide 22: sum but weird (binarySum)
	Slide 23: sum but weird (binarySum)
	Slide 24: Find General Formula: Draw Tree
	Slide 25: Draw Tree
	Slide 26: Draw Tree (Soln.)
	Slide 27: Any Questions?
	Slide 28: Solving Recurrence 2: Tree Method
	Slide 29: Solving Recurrence 2: Tree Method (Soln.)
	Slide 30: Any Questions?
	Slide 31: Common Recurrences (Memorize!)
	Slide 32: Any Questions?
	Slide 33: Timeline

