Lecture 6:
Recurrences

CSE 332: Data Structures & Parallelism
Yafga Khan
Summer 2025

Announcements

EX 1 Due Today

EX 2 Due Friday

EX 3 Released Today
Exam 1 Week 5 (Friday)

Today

* Asymptotic Analysis: Recursion
e Writing a Recurrence Relation
* Solving a Recurrence Relation 1: Unrolling
e Solving a Recurrence Relation 2: Tree Method

Recap: Counting code constructs

Assume basic operations take some amount of constant time
e Arithmetic (1+1), assignment (int b = 3), array index(arrli]), etc.

This approximates reality: a very useful "lie"

Code Construct How much Time?

Counting Recursive Code

* Very interesting with recursive code 0

* Analogy: Perform some computation recursively on a list of size n

e Each recursive method call:
* Perform some Non-Recursive work w(n)
 Call the method T (n) with a smaller part of the list T(n — 1)

* Base Case: base case work b(n)

* So, if we do w(n) work per step and use a smaller list with 1 less
element, we do total work:

e T(n) =wn)+Tn-1)
 Eventually base case with 1 element that does base case work b(n)
* T(1) = b(n)

Recurrence: Terminology

Terminology Recurrence Function/Relation General formula Closed form

Piecewise function that Function written as the General formula evaluated

mathematically models the runtime number of expansion i without recurrence function

of a recursive algorithm and recurrence function or summations

Definition

(might want to define constants) (might have summations) (force them to be in terms of
constants or n)
Let i = logn,

co — n Tn=T()+lo n-c
Bample T(w) =17(7) forn =~ . T(n) =T (=) +i ¢ (n) =T \3ogn) * 1087 -1
2 1 otherwise 2 =T(1) +logn - ¢,

=cg+logn-cq

Writing a Recurrence Function/Relation

int sum(int[]arr,int n) {
(n==0)
arr[n];
arr[n] + sum(arr,n-1);

}
Q: How can we count sum (arr, arr.length) ;?

A: By using recursive formulas (called recurrence function/relation)!
1. Base Case Work

2. Non-Recursive Work + Recursive Work

Any Questions?

Today

* Asymptotic Analysis: Recursive
* Writing a Recurrence Relation
e Solving a Recurrence Relation 1: Unrolling
e Solving a Recurrence Relation 2: Tree Method

10

Solving Recurrence 1: Unrolling

1. Write a Recurrence

forn=1

2. Find General Formula T(n)={§‘1”+T(n_1) otherwise

1. Expand:
T(n) =c;+T(n-1)

=c1+(c1+T((n—1)—1))=c1+c1+T(n—2)

=C1+C1+(C1+T((n_2)_1))=C1+C1+C1+T(n_3)

=cqi+Tn—1)
3. Find Closed Form

1. Find when the base case occurs
e Whenn—i=1(ie.,i=n—1)
2. Get to the base case
Tn) =c,n—1)+TA) =cin—cq+ ¢y

4. Asymptotic Analysis
T(n) € 0(n)

11

Any Questions?

Unrolling: Example, Binary Search

Find an integer in a sorted array > | 3| 5 | 16| 37| so| 73 | 75| 126

// returns whether k is in array
boolean binarySearch (int[]arr, int k, int lo, int hi) {

mid = (hi+lo)/2; //i.e., lo+(hi-1lo)/2

(lo==h1i) false;
(arr [mid]==k) true;
(arr[mid]< k) binarySearch (arr, k,mid+1,hi);

binarySearch (arr, k,lo,mid) ;
}
Q: Cost of binarySearch (arr, k,0,arr.length);?

1. Write a Recurrence

T(n)={

Unrolling: Example

1. Write a Recurrence

Co,
. T(n) = . forn =. 1

2. Find General Formula ¢y + T(;), otherwise

e Expand:

T(n) =c, +T(§)
3. Find Closed Form

* Find when the base case occurs

« Get to the base case 4. Finding Big-Theta

T(n) = T(n) e O()

15

Unrolling: Example (Soln.)

1. Write a Recurrence
C)
T(n) ={ ’

forn =1

. n _
2. Find General Formula c; + T(;); otherwise

e Expand:
T(n) =c;+T (E)

=c1+<c1+T<%>>=cl+cl+T(§) =C1+C1+<C1+T<2>>=€1+C1+61+T(§)
=---=cli+T(%)
3. Find Closed Form

* Find when the base case occurs

* When; =1(ie,i=logn) 4. Finding Big-Theta
Get to the base case T(n) € O()
T(n) = cqi + T(%) =c;logn+T(1) = ¢, logn + ¢

I

16

Iterative vs Recursive: sum ()

* Iterative sum () : e une L] el
e "Obviously" linear (int i=0; i<arr.length; ++i)
ans += arr[i];
ans;
}

* Recursive sum () :
* Recurrenceisc; + ¢4 + -+ ¢4 + ¢o for n times so linear

int sum(int[]arr,int n) {
(n==0)
arr[n];
arr[n] + sum(arr,n-1);

Any Questions?

Recap: Algorithm Analysis of Recursive Code

boolean binarySearch (int[]arr, int k, int lo, int hi) {

mid = (hi+lo) /2;
(lo==hi) false;
 Writing Recurrences (i.e., count recursive code) SO e Senneh (e e kL)

binarySearch (arr, k, 1o, mid) ;

1. Split to Cases
e Base Case: (e.g., T(1) =)
* Recursive Case: Non-Recursive + Recursive Work (e.g., T(n) =c; + T (2))

}

» Solving Recurrences (e.g., specifically with Unrolling here)
2. Find General Formula
* Expand by substitution until pattern emerges (e.g., T(n) = -+ =c;i + T (%)
3. Find Closed Form
L —1ori= logn))

* Find when the base case occurs (e.g., when T (Zﬁl) = base case = T(1) (i.e., =

* Get to the base case (e.g., Substitute i = logntoT(n) =i + T (Zﬂl) = ¢y logn + T(1) = ¢, logn + ¢;)

* Asymptotic Analysis or Finding Big-Theta (e.g., informally as here)
4. T(n) =-<erlogn +€5 € 0(logn)

19

Any Questions?

Iterative vs Recursive: sum ()

* Iterative: e une L] el
e "Obviously" linear (int i=0; i<arr.length; ++i)
ans += arr[i];
ans;
}
* Recursive:

* Recurrenceisc; + ¢4 + -+ ¢4 + ¢o for n times so linear

int sum(int[]arr,int n) {
(n==0)
arr[n];
arr[n] + sum(arr,n-1);

sum but weird (binarySum)

int binarySum(int[] arr, int lo, int hi) {
if(lo==hi) return 0O;
1f(lo==hi-1) return arr[lo];

int mid = (hi+lo)/2;
return binarySum(arr,lo,mid) + binarySum(arr,mid,hi);

}
Q: How can we count binarySum(arr,arr.length) ;?

1. Write a Recurrence

T(n) = {

22

sum but weird (binarySum)

int binarySum(int[] arr, int lo, int hi) {
if(lo==hi) return 0O;
1f(lo==hi-1) return arr[lo];

int mid = (hi+lo)/2;
return binarySum(arr,lo,mid) + binarySum(arr,mid,hi);

}
Q: How can we count binarySum(arr,arr.length) ;?

1. Write a Recurrence
(
Co» forn =1

T = <
(n) cp + 2T (g), otherwise

\
How to solve? @ Good luck doing Unrolling

23

2. Find General Formula: Draw Tree

4.

5.

Initialize Table
Draw Actual Tree

Misc. Details
e Recursive Calls, # Nodes, Sum Work, etc.

Base Case
* Find when the base case occurs

Work Calculation
1. Total Base Case Work
2. Total Non-Recursive + Recursive Work

1. Write a Recurrence

T(n) = {

Co» forn=1

cy + 2T (g) , otherwise

24

Co, forn=1

2 . D ra W Tre e 1. Write a Recurrence T(n) = ¢, + 2T (1_21)’ otherwise

i Recursive # Nodes
Call

0

T(n)
1
2
[
|
2. Total Non-Recursive + Recursive Work:
T(1) J,

Find when the base case occurs:

2
1. Total Base Case Work: ’

2. Draw Tree (Soln.) L wesreamenet =1 Vo

i Recursive # Nodes
Call
’ rn) ! \ -
+ €

2 T(%) 22 QG + Qvg = 4¢;
; T(%) z.i @Jr@‘l' Coe e T "4*@4—@ \ =é"cl

log(n)—1
2. Total Non-Recursive + Recursive Work: ¢, + 2¢; + 4¢, + -+ + 2‘c1 = z 2L .

logn T(.l) n +@‘I’-----*"— - T = +. . J«

Find when the base case occurs:

; =1(i.e., i = logn) 1. Total Base Case Work: co+cot+ ot ey = z Co
i=0

Any Questions?

Solving Recurrence 2: Tree Method

2.

3.

Find General Formula

T(n) = Total Base Case Work + (Total Total Non—Recursive+Recursive Work)

Find
T(n)

Closed Form

o

Finite Geometric Series!
m 1 _ Xm+1

i:
Ex 1—x

=0

%

4. Finding Big-Theta

T(n) e ©(C)

28

Solving Recurrence 2: Tree Method (Soln.)

2. Find General Formula

T(n) = Total Base Case Work + (Total Non—Recursive+Recursive Work)

n-—1

Y,

=0

3. Find Closed Form

1 — Zlog n—1+1

T(Tl) = CgNn + C1

con + cl(Zlog" —
con+c,(n—1)
(co+cin—c

1-2

1)

log(n)-1

+ Z Zl ‘ C1
=0

)

o

Finite Geometric Series!
m 1

1 =Mt
l=
2’“ 1—x

=0

%

4.

Finding Big-Theta
T(n) € 0(n)

29

Any Questions?

Common Recurrences (Memorizel)

Common Recurrence
. . Order of Growth
Function/Relation

T(n) =T (g) +c € O(logn) Binary Search

T(n) = 2T (g) +n € O(nlogn) Merge Sort

T(n)=T (g) +n € O(n)

T(n) = 2T (g) + ¢ € O(n) Recursive "binary" sum
Tn)=T(n—1) +c e O(n) Recursive sum
Tm)=Tn—-1)+n e O(n?)

T(n) =2T(n—1) +c¢ e (2™

31

Any Questions?

Timeline

* Asymptotic Analysis: Recursive
* Writing a Recurrence Relation
* Solving a Recurrence Relation 1: Unrolling
e Solving a Recurrence Relation 2: Tree Method

* Dictionary ADT

* Review: Binary Search Trees
* Trees
* Basics, Properties, Operations

	Untitled Section
	Slide 1: Lecture 6: Recurrences
	Slide 2: Announcements
	Slide 3: Today

	Untitled Section
	Slide 4: Recap: Counting code constructs
	Slide 5: Counting Recursive Code
	Slide 6: Recurrence: Terminology
	Slide 7: Writing a Recurrence Function/Relation
	Slide 9: Any Questions?

	Untitled Section
	Slide 10: Today
	Slide 11: Solving Recurrence 1: Unrolling
	Slide 12: Any Questions?
	Slide 13: Unrolling: Example, Binary Search
	Slide 15: Unrolling: Example
	Slide 16: Unrolling: Example (Soln.)
	Slide 17: Iterative vs Recursive: sum()
	Slide 18: Any Questions?

	Untitled Section
	Slide 19: Recap: Algorithm Analysis of Recursive Code
	Slide 20: Any Questions?
	Slide 21: Iterative vs Recursive: sum()
	Slide 22: sum but weird (binarySum)
	Slide 23: sum but weird (binarySum)
	Slide 24: Find General Formula: Draw Tree
	Slide 25: Draw Tree
	Slide 26: Draw Tree (Soln.)
	Slide 27: Any Questions?
	Slide 28: Solving Recurrence 2: Tree Method
	Slide 29: Solving Recurrence 2: Tree Method (Soln.)
	Slide 30: Any Questions?
	Slide 31: Common Recurrences (Memorize!)
	Slide 32: Any Questions?
	Slide 33: Timeline

