Lecture 4: Priority Queue ADT

CSE 332: Data Structures & Parallelism

Yafqa Khan

Summer 2025

Announcements

- EX01 Analysis
 - Due Today
- EX02 Heaps
 - Releases Wednesday
 - Due next Friday

Today

- Priority Queue ADT
- Tree Stuff
- Binary Min-Heap Data Structure
 - Basics, Properties, Operations
 - Array Representation
- Floyd's BuildHeap

Priority Queue: Scenario

- What is the difference between waiting for service at
 - a pharmacy
 - VS an ER?
- Pharmacies usually follow the rule
 - First Come, First Served
- Emergency Rooms assign **priorities** based on everyone's needs

Priority Queue ADT

- Chapter 6 of Weiss
- The *PriorityQueue* ADT supports operations:
 - insert (enqueue equivalent):
 - adds an item at the end
 - deleteMin (dequeue equivalent):
 - finds, returns, and removes the minimum element in the priority queue
 - findMin, isEmpty, etc.
 - BUT! Also only holds **comparable data**
- An example of a PriorityQueue data structure is a heap, with its associated algorithms for the operations
- One implementation is in the library java.util.PriorityQueue

Priority Queue: ADT

- Holds comparable data
 - Each element has a "priority"
 - Lesser priority value = High
 - = Higher priority
 - = Closer to the "front of the priority queue"

(For a min Priority Queue)

- Main operations: insert and deleteMin
 - insert (enqueue equivalent):
 - adds an item at the end
 - deleteMin (dequeue equivalent):
 - finds, returns, and removes the minimum element in the priority queue
 - break ties arbitrarily
 - minimum element/priority value = highest priority

Priority Queue: Simplifying in Lecture

- We will use ints as the data AND the priority
- e.g., insert(5) = insert the data 5 with priority value 5
 - Remember: lower priority value = closer to the "front of priority queue"

Priority Queue: Preliminary Data Structures

	insert	deleteMin
Unsorted Array		
Unsorted Linked-List		
Sorted Circular Array		
Sorted Linked-List		
Binary Search Tree (BST)		

Note: Worst case, assume arrays have enough space

Priority Queue: Heap Data Structure

	insert	deleteMin
(Binary Min) Heap		

Extra Bonus: Good constant factors, If items arrive in random order, then the "average"-case of insert is $\Theta(1)$

Key idea: Only pay for functionality needed

- We need something better than scanning unsorted items
- <u>But</u> we do not need to maintain a full sorted list
- Does the log *n* remind you of anything? $\bigotimes \bigotimes$

Any Questions?

Today

- Priority Queue ADT
- Tree Stuff
- Binary Min-Heap Data Structure
 - Basics, Properties, Operations
 - Array Representation
- Floyd's BuildHeap

- root(T):
- leaves(T):
- children(B):
- parent(H):
- siblings(E):
- ancestors(F):
- descendants(G):
- subtree(G):

- depth(B):
- height(G):
- height(T):
- degree(B):
- branchingFactor(T):

Tree T

С

G

В

Е

Κ

D

F

Η

- depth(B):
- height(G):
- height(T):
- Height:
 - Count the arrows from node to deepest descendent!
- Depth:
 - Count the arrows from root to node!

• Binary Tree:

- Every node has max. 2 children
- **n**-ary Tree:
 - Every node has max. *n* children
- Perfect Tree:
 - Every row is completely full
- Complete Tree:
 - · Every row is completely full except the bottom row
 - AND the bottom row is filled from left to right

More on Perfect Tree

- Perfect Tree:
 - Every row is completely full

		# leaves
0	1	1
1	3	2
2	7	4
3	15	8
	?	

h - 1 $\boldsymbol{n} =$ $\overline{i=0}$ $\log n = \log 2^{h+1} - 1$ $h \in \mathcal{O}(\log n)$

Any Questions?

Today

- Priority Queue ADT
- Tree Stuff
- Binary Min-Heap Data Structure
 - Basics, Properties, Operations
 - Array Representation
- Floyd's BuildHeap

(Binary Min-) Heap: Basics & Properties

- More commonly known as a Binary Heap or simply a Heap
- 1. Structure Property:
 - A Complete (Binary) Tree
- 2. Heap Order Property:
 - Every (non-root) node has a priority value \geq the priority value of its parent
- How is this different from a binary search tree?

Heap or Not a Heap?

a)

d) 5 7 6 8 9

- Put new node in next position on bottom row
- 2. Order Property:
 - percolateUp()
- deleteMin:
 - 1. minElement = root.data
 - 2. Structure Property:
 - Move right-most node in last row to root
 - 3. Heap Order Property:
 - percolateDown to restore

Overall strategy:

- Preserve Complete Tree
 Structure Property
- This may break Heap Order
 Property
- Percolate to restore Heap Order Property

Heap: Operations (insert)

• insert(16)

Heap: Operations (deleteMin)

deleteMin()

Any Questions?

Today

- Priority Queue ADT
- Tree Stuff
- Binary Min-Heap Data Structure
 - Basics, Properties, Operations
 - Array Representation
- Floyd's BuildHeap

Heap: Array Representation

From node *i*,

- Left Child:
- Right Child:
- Parent:

*Index 0 skipped so math is easier

Heap: insert Pseudocode (w/ Array)

```
void insert(int val) {
    if(size==arr.length-1)
        resize();
    size++;
    i=percolateUp(size,val);
    arr[i] = val;
```


Heap: deleteMin Pseudocode (w/ Array)

```
int deleteMin() {
    if(isEmpty()) throw...
    ans = arr[1];
    hole = percolateDown
        (1,arr[size]);
    arr[hole] = arr[size];
    size--;
    return ans;
}
```

2

2

8

3

1

0

```
int percolateDown(int hole,
                   int val) {
while(2*hole <= size) {</pre>
  left = 2*hole;
  right = left + 1;
  if(arr[left] < arr[right]</pre>
     || right > size)
    target = left;
  else
    target = right;
  if(arr[target] < val) {</pre>
    arr[hole] = arr[target];
    hole = target;
  } else
      break;
 return hole;
```

5

8

9

6

4

4

Heap: Operations Array Example (insert)

1. insert: 16, 32, 4, 57, 80, 43, 2

Heap: Operations Array Example (deleteMin)

1. deleteMin

Heap: Operations Array Example (Solution)

1. deleteMin

Heap: Array Evaluation

Advantages:

- 1. Minimal wasted space:
 - If a tree node object, need pointers (expensive!)
- 2. Fast Lookups
 - Quick array lookup
 - Calculating index (multiplication + division by 2) is extremely fast

Disadvantages:

1. Resizing

Conclusion: It's too good so almost always use array

Heap: Other operations

- decreaseKey(idx, Δ) or increaseKey(idx, Δ)
 - 1. arr[idx] -= Δ
 - 2. percolateUp() Worst Case $\Theta(\log n)$

- or arr[idx] += Δ
- 2. percolateUp() or percolateDown()

- delete(idx)
 - 1. decreaseKey(idx, ∞)
 - 2. deleteMin()

Worst Case $\Theta(\log n)$

Heap: Note on decrease/increaseKey

- MORE COMMONLY CALLED changePriority (key, prio)
 - 1. Uses a map to go from key -> idx
 - 2. arr[idx] = prio
 - 3. percolateUp() or percolateDown()

(Same as decrease/increaseKey)

Any Questions?

Heap: Building a Heap

Scenario: n elements into a blank Heap

- Call insert() n times
 - Runtime? $\mathcal{O}(n \log n)$

Can we do better?

• Yes! O(n) with Floyd's buildHeap
Heap: Floyd's buildHeap

Recall: Heap Properties

- 1. Structure Property: A Complete (Binary Tree)
- 2. Heap Order Property: All nodes' priority \geq its parent's priority.

Floyd's buildHeap $-\mathcal{O}(n)$

1. Put the n elements in the array (any order fine)

- 1. Just fix Heap Order Property:
- percolateDown() from [one level above leaves] -> root

Heap: buildHeap Example

- percolateDown(), bottom-up:
 - Notice: leaves already Heap Order
 - Work up to root one at a time

```
void buildHeap() {
  for(i = size/2; i>0; i--) {
    val = arr[i];
    hole = percolateDown(i,val);
    arr[hole] = val;
```


	12	5	11	3	10	2	9	4	8	1	7	6			
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

Heap: buildHeap Example (Solution 2)

Heap: buildHeap Example (Solution 3)

Heap: buildHeap Example (Solution 4)

Heap: buildHeap Example (Solution 5)

Heap: buildHeap Example (Solution 6)

buildHeap Correctness

```
void buildHeap() {
  for(i = size/2; i>0; i--) {
    val = arr[i];
    hole = percolateDown(i,val);
    arr[hole] = val;
}
```

Loop Invariant: For all j > i, arr[j] is less than its children

- True initially: If $j > \frac{\text{size}}{2}$, then j is a leaf
 - Otherwise, its left child would be at position > size
- True after one more iteration: loop body and percolateDown() make arr[i] less than children without breaking the property for any descendants

So, after the loop finishes, all nodes are less than their children

buildHeap Efficiency

• Runtime: $\mathcal{O}(n)$

which is $\mathcal{O}(n)$

- Total iterations: n/2
- 1. $\frac{1}{2}$ iterations: percolate at most one step so $\leq \frac{n}{4}$ cost
- 2. $\frac{1}{4}$ iterations: percolate at most two steps so $\leq \frac{2n}{8}$ cost
- 3. $\frac{1}{8}$ iterations: percolate at most three steps so $\leq \frac{3n}{16}$ cost

Summing cost:
$$\frac{\pi}{2} \cdot \left(\frac{2}{2} + \frac{2}{4} + \frac{3}{8} + \frac{1}{16} + \frac{3}{32} + \dots \right)$$

= 2

void buildHeap() {
 for(i = size/2; i>0; i--) {
 val = arr[i];
 hole = percolateDown(i,val);
 arr[hole] = val;

Any Questions?

Timeline

- Priority Queue ADT
- Tree Stuff
- Binary Min-Heap Data Structure
 - Basics, Properties, Operations
 - Array Representation
- Floyd's buildHeap
- Asymptotic Analysis: Recursive
 - Writing a Recurrence Relation
 - Solving a Recurrence Relation 1: Unrolling
 - Solving a Recurrence Relation 2: Tree Method