Lecture 4: Priority Queue
ADT

CSE 332: Data Structures & Parallelism
Yafqga Khan
Summer 2025

Announcements

EX01 Analysis
Due Today

EXO2 Heaps

Releases Wednesday
Due next Friday

Today

* Priority Queue ADT
* Tree Stuff
* Binary Min-Heap Data Structure

* Basics, Properties, Operations

* Array Representation

* Floyd's BuildHeap

Priority Queue: Scenario

What is the difference between waiting for service at

a pharmacy
- VS anER?

Pharmacies usually follow the rule
First Come, First Served

Emergency Rooms assign priorities based on everyone's needs

Priority Queue ADT

Chapter 6 of Weiss

The PriorityQueue ADT supports operations:
insert (enqueue equivalent):
adds an item at the end

deleteMin (dequeue equivalent):
finds, returns, and removes the minimum element in the priority queue

findMin, 1sEmpty, etc.
BUT! Also only holds comparable data

An example of a PriorityQueue data structure is a heap, with its
associated algorithms for the operations

One implementation is in the library java.util.PriorityQueue

Priority Queue: ADT

Holds comparable data
- Each element has a "priority"
- Lesser priority value = Higher priority
= Closer to the "front of the priority queue"
(For a min Priority Queue)

. Main operations: insert and deleteMin

- insert (enqueue equivalent):
« addsanitem at the end
« deleteMin (dequeue equivalent):

* finds, returns, and removes the minimum element in the priority queue
* break ties arbitrarily
 minimum element/priority value = highest priority

Priority Queue: Simplifying in Lecture

- We will use ints as the data AND the priority

e.g., insert (5) =insert the data 5 with priority value 5
Remember: lower priority value = closer to the "front of priority queue"

Priority Queue: Preliminary Data Structures

insert deleteMin

Unsorted Array

Unsorted Linked-List

Sorted Circular Array

Sorted Linked-List

Binary Search Tree (BST)

Note: Worst case, assume arrays have enough space

Priority Queue: Heap Data Structure

insert deleteMin

(Binary Min) Heap

Extra Bonus: Good constant factors, If items arrive in random order, then the "average"-case of insert is ©(1)

Key idea: Only pay for functionality needed
We need something better than scanning unsorted items
- But we do not need to maintain a full sorted list

Does the log n remind you of anything? @ @

11

Any Questions?

Today

* Priority Queue ADT
* Tree Stuff
* Binary Min-Heap Data Structure

* Basics, Properties, Operations

* Array Representation

* Floyd's BuildHeap

‘Tree‘ Terminology 1

. root(T):

. leaves(T):

. children(B):
. parent(H):

. siblings(E):
. ancestors(F):

. descendants(G):
. subtree(G):

‘Tree‘ Terminology 2

. depth(B):
.- height(G):
. height(T):
. degree(B):

. branchingFactor(T):

‘Tree‘ Terminology 2

depth(B):
height(G):
height(T):

Height:
- Count the arrows from node to deepest descendent!
Depth:

« Countthe arrows from root to node!

‘Tree ‘ Types

. Binary Tree:
Every node has max. 2 children

- m-ary Iree:
Every node has max. n children

Perfect Tree:
Every row is completely full

Complete Tree:

Every row is completely full except the bottom row
AND the bottom row is filled from left to right

More on Perfect Tree

e Perfect Tree:
* Everyrow is completely full

leaves O
0 1 1
1 3 2
2 7 4 h
3 15 8 n=225=2h+1—1
i=0
> logn = log2"*1 — 1

h € O(logn)

20

Any Questions?

Today

* Priority Queue ADT
* Tree Stuff
* Binary Min-Heap Data Structure

* Basics, Properties, Operations

* Array Representation

* Floyd's BuildHeap

24

(Binary Min-) Heap: Basics & Properties

More commonly known as a Binary Heap or simply a Heap

1. Structure Property:
- A Complete (Binary) Tree

2. Heap Order Property:

Every (non-root) node has a priority value = the priority value of its parent

How is this different from a binary search tree?
Not a Heap (30)

25

Heap or Not a Heap?

P,

a) b)
C)

- 1nsert:
1. Structure Property:
« Put new node in next position on bottom row

2. Order Property:
e percolateUp()

deleteMin: Overall strategy:
1. minElement = root.data * Preserve Complete Tree
2. Structure Property: Structure Property
« Move right-most node in last row to root This may break Heap Order
3. Heap Order Property: Property
« percolateDown to restore * Percolate to restore Heap

Order Property

Heap: Operations (1nsert)

. 1nsert(10)

31

Heap: Operations (deleteMin)

. deleteMin ()

Any Questions?

Today

* Priority Queue ADT
* Tree Stuff
* Binary Min-Heap Data Structure

* Basics, Properties, Operations

* Array Representation

* Floyd's BuildHeap

35

Heap: Array Representation

From node i,

. Left Child:
- Right Child:
. Parent:
A H| I |J|K]|L
0 1 8 9 10 11 12 13

*Index O skipped so math is easier

36

Heap: insert Pseudocode (w/ Array)

void insert (int wval) {
(size==arr.length-1)
resize () ;
size++;
i=percolateUp(size,val);

int percolateUp(int hole,
int val) {
(hole > 1 &&
val < arr[hole/2]) {

arr [hole] = arr[hole/2];

hole = hole / 2;

arr[i] = val; }
} hole;
}
(1
(2 «p
(4) (B (B)
(D) (B
10 | 20 | 80 | 40 | 60 | 85 | 99 | 700 | 50
0 1 2 3 4 5 6 7 8 9 10 11 12 13

14

38

Heap: deleteMin Pseudocode (w/ Array)

int deleteMin() { int percolateDown(int hole,
. int val) {
(1sEmpty ()) (2*hole <= size) {
ans = arr[1l]; left = 2*hole;
hole = percolateDown right = left + 1;
(1,arr[size]) ; (arr[left] < arr[right]
arr[hole] = arr[size]; ELElh o SRR
T e target = left;
ans, target = right;
} (arr[target] < wval) {
<D arr[hole] = arr[target];
- P } hole = target;
(4) 6 B U
D D }

hole;

39

Heap: Operations Array Example (insert)

1. 1nsert:16,32,4,57,80,43, 2

Heap: Operations Array Example (deleteMin)

1. deleteMin

Heap: Operations Array Example (Solution)

1. deleteMin

Heap: Array Evaluation

Advantages:

1. Minimal wasted space:
If a tree node object, need pointers (expensive!)

2. Fast Lookups
Quick array lookup
Calculating index (multiplication + division by 2) is extremely fast

Disadvantages:
1. Resizing

Conclusion: It's too good so almost always use array

Heap: Other operations

decreaseKey (idx, A) or increaseKey (idx, A)
1. arr[idx] -= A or arr[idx] += A

2. percolateUp () or percolateDown ()

Worst Case ©(logn)

delete (1dx)

1. decreaseKey (1dx,)
2. deleteMin ()

Worst Case ©(logn)

44

Heap: Note on decrease/increaseKey

MORE COMMONLY CALLED changePriority(key, prio)

1. Uses amap to go from key -> idx
2. arr[1dx] = prio
3. percolateUp () orpercolateDown ()

(Same as decrease/increaseKey)

Any Questions?

Heap: Building a Heap

Scenario: n elements into a blank Heap

e Call insert () ntimes
* Runtime? O(nlogn)

Can we do better?
* Yes! O(n) with Floyd's buildHeap

47

Heap: Floyd's buildHeap

Recall: Heap Properties
1. Structure Property: A Complete (Binary Tree)
2. Heap Order Property: All nodes’ priority = its parent’s priority.

Floyd’s buildHeap - 0(n)
1. Put the n elements in the array (any order fine)

S 3 1 7

0 1 2

1. Just fix Heap Order Property:
percolateDown() from [one level above leaves] -> root

Heap: buildHeap Example

- percolateDown (), bottom-up:

Notice: leaves already Heap Order °
- Work up to root one at a time
void buildHeap () { ‘a "
(i = size/2; i>0; i--) {
val = arr[i]; ‘9 " ‘9 ‘;
hole = percolateDown (i,val)
arr [hole] = val;
} OOOOEC
}
12| S |11 | 3 [10| 2 9 4 8 1 7 6
0 | 2 3 4 5 6 7 8 9

10 11 12 13 14 15

Heap: buildHeap Example (Solution 1)
Red = Node that breaks Heap Order Property

o S @
G OO o
O O 0O 00 @ O C
OOO0O OOOOC

Heap: buildHeap Example (Solution 2)
© > ()
() (1 () ()

OBROENOENONO (OO

OOOOC OOO®OE

Heap: buildHeap Example (Solution 3)
() > ©
© (" (2] ()
) O O © @O O O C

OOOOE OOOOE

Heap: buildHeap Example (Solution 4)
(=) > ()
(=) O ()
ORNOENOENONO NGO

/
(O
OOOOO OOOOC

Heap: buildHeap Example (Solution 5)
() > ©

() () (2 (2
\

D O o O O O © C
OOOOE OOOOE

Heap: buildHeap Example (Solution 6)
© Sy -G
(1 () ’ (2 (24

OB OO 60 OB OO

OOOOE 0JOI0I0)O

void buildHeap () {
(i = size/2; i>0; i--) {

buildHeap Correctness v Zemenl

hole = percolateDown (i,val) ;
arr[hole] = val;

}

Loop Invariant: For all j > i, arr[j] is less th::{n its children

* True initially: If j > 512£ , then j is a leaf

* Otherwise, its left child would be at position > size

* True after one more iteration: loop body and percolateDown ()
make arr [1] less than children without breaking the property for
any descendants

So, after the loop finishes, all nodes are less than their children

56

void buildHeap () {
(i = size/2; i>0; i--) {

bUl ldHe a—p CorreCtneSS ‘;i]]'-e == ;J;ZE::;L)]J.;teDown(i,val) ;
arr[hole] = val;

Ot
(U ()
) QO Q G

0]01010]1010I01®

void buildHeap () {
(i = size/2; i>0; i--) {
buildHeap Efficiency L

hole = percolateDown (i,val) ;
arr[hole] = val;

Runtime: O(n) }
Total iterations: n/2

o 1. % iterations: percolate at most one step so < % cost
s 2. i iterations: percolate at most two steps so < 2?11 cost
« 3. é iterations: percolate at most three steps so < i—z cost
. n 1 2 3 4 5
Summing cost: — - (—+—+—+—+—+)
2 \2 4 8 16 32

= 2

which is O(n)

Weiss 6.3.4

Any Questions?

Timeline

Priority Queue ADT
Tree Stuff

Binary Min-Heap Data Structure
Basics, Properties, Operations
Array Representation

Floyd's buildHeap

Asymptotic Analysis: Recursive
Writing a Recurrence Relation
Solving a Recurrence Relation 1: Unrolling
Solving a Recurrence Relation 2: Tree Method

	Slide 1: Lecture 4: Priority Queue ADT
	Slide 2: Announcements
	Slide 3: Today
	Slide 4: Priority Queue: Scenario
	Slide 5: Priority Queue ADT
	Slide 6: Priority Queue: ADT
	Slide 9: Priority Queue: Simplifying in Lecture
	Slide 10: Priority Queue: Preliminary Data Structures
	Slide 11: Priority Queue: Heap Data Structure
	Slide 12: Any Questions?
	Slide 13: Today
	Slide 14: 🌲Tree🌲 Terminology 1
	Slide 16: 🌲Tree🌲 Terminology 2
	Slide 17: 🌲Tree🌲 Terminology 2
	Slide 19: 🌲Tree🌲 Types
	Slide 20: More on Perfect Tree
	Slide 23: Any Questions?
	Slide 24: Today
	Slide 25: (Binary Min-) Heap: Basics & Properties
	Slide 26: Heap or Not a Heap?
	Slide 30: Heap: Operations Basic Idea
	Slide 31: Heap: Operations (insert)
	Slide 32: Heap: Operations (deleteMin)
	Slide 34: Any Questions?
	Slide 35: Today
	Slide 36: Heap: Array Representation
	Slide 38: Heap: insert Pseudocode (w/ Array)
	Slide 39: Heap: deleteMin Pseudocode (w/ Array)
	Slide 40: Heap: Operations Array Example (insert)
	Slide 41: Heap: Operations Array Example (deleteMin)
	Slide 42: Heap: Operations Array Example (Solution)
	Slide 43: Heap: Array Evaluation
	Slide 44: Heap: Other operations
	Slide 45: Heap: Note on decrease/increaseKey
	Slide 46: Any Questions?
	Slide 47: Heap: Building a Heap
	Slide 48: Heap: Floyd's buildHeap
	Slide 49: Heap: buildHeap Example
	Slide 50: Heap: buildHeap Example (Solution 1)
	Slide 51: Heap: buildHeap Example (Solution 2)
	Slide 52: Heap: buildHeap Example (Solution 3)
	Slide 53: Heap: buildHeap Example (Solution 4)
	Slide 54: Heap: buildHeap Example (Solution 5)
	Slide 55: Heap: buildHeap Example (Solution 6)
	Slide 56: buildHeap Correctness
	Slide 57: buildHeap Correctness
	Slide 58: buildHeap Efficiency
	Slide 59: Any Questions?
	Slide 60: Timeline

