Lecture 3: Algorithm Analysis 2

CSE 332: Data Structures & Parallelism
Yafga Khan
Summer 2025

Announcements

- EXOO
- Due Monday

. EXO1

- QOut later today
- Due Monday, July 7

Today

* Asymptotic Analysis Review
* Big-Oh Summary

* Cases vs Asymptotics

* Amortization

// requires array is sorted
// returns whether k is in array

Recap Summary B I
for(int i=0; i < arr.length; ++i)
if (arr[1i] == k)
return true;
1. Count Code return false:

1. How to count code constructs }

2. Get acountin terms of n, usually in the worst-case

Worst Case: when integer not in sorted array
Count: 1 ops + niterations X 3 ops =1 + 3n

1. Big-Oh - Group into set (family) of functions
1. Asymptotic Behavior (what happens as n — big?)
2. Informally: "Drop" coefficients, lower-order terms
3. Formallv: Find © and na

1+ 3n€0(n)
1+ 3nisin O(n)

4

A Time : rj_()

Recap: Formally Big-Oh /,- =

Input Size

Formal Definition: - - 2
(»]

Suppose [:N = R, g: N = R are two functions, then,
f(n) € 0(9(”)) = 3 ER>0,nOENVneN2n0f(n) <c-gn)

In English:
f(n)isin 0(g (n)) iff there exists constants © and n, such that:

f(n) <c-gn)foralln = ny
Note: ¢ is a positive real number, ny and n are natural numbers

ATime i Cj—()

Recap: Why ny? Why ? /")

Input Size

In English: "o >
f(n)isin O(g(n)) iff there exists constants - and n, such that:
f(n)<c-gn)foralln =n,
Note: ¢ is a positive real number, 1y and n are natural numbers
Why n,? Why < ?
A‘Time | . ATime
iy £
|
Input SIZi (—j—() | |
nput Size

Ne >
6

Big-Oh: Example 1

In English:
f(n)isin O(g(n)) iff there exists constants © and n, such that:

f(n)<c-gn)foralln =n,
Note: ¢ is a positive real number, ny and n are natural numbers

. How to show f(n) isin 0(9 (n))?
Pick a © large enough to "cover the constant factors"
Pick a ny large enough to "cover the lower-order terms”

Example: Let f(n) = 3n + 4 and g(n) = n, show f(n) € 0(g(n))

Big-Oh: Example 1

How to show f(n) is in 0(g (n))?
Pick a © large enough to "cover the constant factors"
Pick a ny large enough to "cover the lower-order terms”

Example: Let f(n) = 3n + 4 and g(n) = n, show f(n) € 0(g(n))

Observe the following:
3n<3n, V n24.
4< n, Vnz24.
Adding these inequalities, we see that,
3n+4<4n, V n24.

Therefore, f(n) € O(g(n)), withc=4andn =4.m

Big-Oh: Example 2

Let f(n) = 4n? 4+ 3n + 4 and g(n) = n3, show f(n) € 0(g(n)).

Big-Oh: Example 2 (Solution)

Let f(n) = 4n? 4+ 3n + 4 and g(n) = n3, show f(n) € 0(g(n)).

Observe the following:
4n’*<4n® V n21.
3n £3n3, V n21.
4 <4n° V n21.
Adding these inequalities, we get:

An>+3n+4<11n3, V n21.
Therefore, f(n) € O(g(n)), withc=11landn =1m

10

Big-Oh: Example 3

Let f(n) = n and g(n) = n - 1. Show that f(n) € O(g(n)).

11

Big-Oh: Example 3 (scratch work)
Let f(n) = n and g(n) = n - 1. Show that f(n) € O(g(n)).
Want to find ¢, n sothatn=c *(n-1)

Playing with algebra, we can rearrange this as:
n<c*n-c
c<(c-1)*n

If we try plugging in c = 2, we get:

2=n
Which is true for n = 2. (So we should pick ¢, n = 2)

Big-Oh: Example 3 (Proof)

Observe that
2<n, Vnz22
We can rewrite this inequality as
2<2n-n,Vnz=22
Rearranging, this is equivalent to
n<2*(n-1),vVnz22
Therefore, f(n) € O(g(n)), withc=2and n_ = 2.

In English:
f(n)isin O(ig(n)) iff

: . . there exists constants © and n, such that:
Big-Oh: Example Exercise o e
Note: is a positive real number,
True or False? ny and n are natural numbers

72 44+3n€0(n)

2 n+2logn € O(logn)
3 logn+2e€0(1)

+ n°% e o1

Note:

Do NOT ignore constants that are not multipliers:
n3 € 0(n?) is O(n?) : FALSE
3™ € 0(2™): FALSE

14

Big-Oh: Example Exercise (Solution)

True or False?

. 44 3n€0(n): TRUE

2 n+ 2logn € O(logn): FALSE
3 logn+2¢€0(1): FALSE

+ n°% € 0(1.1™): TRUE

Note:

- Do NOT ignore constants that are not multipliers:
. n3 e 0(n?)is0(n?): FALSE
.+ 3™ € 0(2™): FALSE

15

Today

* Asymptotic Analysis Review
* Big-Oh Summary

* Cases vs Asymptotics

* Amortization

16

What can you drop?

- Coefficients
e.g., 3n? vs 4n? is same

Low-order terms

e.g., n* + nvsn?

IS same

NOT constants that are not multipliers
e.g.,n? vs n3 is NOT same

e.g., 2™ vs 3™ is NOT same

(Intuitive way to understand the definition)

17

Big-Oh: Common Functions

¢ 0(1) Constant Fastest
« O(logn) Logarithmic

- 0(n) Linear

« O(nlogn) "nlogn" or Loglinear

¢« 0(n? Quadratic

« 0(n® Cubic

.« 0(nk) Polynomial

« O(k") Exponential Slowest

Usage note: "exponential" does not mean "grows really fast", it means "grows at rate proportional to k™" for some k > 1"

18

Beyond Big-Oh: More Asymptotic Notations

- Upper bound (Big-Oh):

« Suppose [:N = R, g: N - R are two functions, then,

- f(n)EO (g (n)) = 3 eRr,,n,eNVneNzn, /(1) < ¢ - g(n)
. Lower bound (Big-Omega):

- Suppose f:N - R, g: N = R are two functions, then,

- f(n) € .Q(g(n)) = 3. eRr, yn,eNVneNzn, /(1) = ¢+ g(n)
.- Big-Theta bound:

- Suppose [:N = R, g: N - R are two functions, then,

- f(n) €B(g(m) =f(n) €0(9(m) A f(n) € Q(g(n))

e« (Can use different)

19

Formally Big-Oh

In English:
f(n)isin O(g(n)) iff there exists constants © and n, such that:

f(n)<c-gn)foralln =n,
Note: ¢ is a positive real number, ny and n are natural numbers

How to show f(n) is in O(g (n))?
Pick a © large enough to "cover the constant factors"
Pick a ny large enough to "cover the lower-order terms"

Example: Let f(n) = 3n+ 4 and g(n) = n, show f(n) € O(g(n)).

let c = “andny =5.Then,3n+4 < -nforalln = 5.

Notice: If g(n) becomes bigger (e.g., g(n) = n° or g(n) = 2"), same result

20

Now « - g(n) is at the bottom! | V

Formally Big-Omega ((}) / &Q

In English: o
f(n)isin Q(g(n)) iff there exists constants © and 1, such that:

f(n)=c-gn)foralln =n,
Note: ¢ is a positive real number, ny and n are natural numbers

!

Example: Let f(n) = 3n+ 4and g(n) = n, show f(n) € Q(g(n)).
letc = T andny, =1.Then,3n+4 > -nforalln = 1.

Notice: If g(n) becomes smaller (e.g., g(n) = logn or g(n) = 1), same result

21

Formally Big-Theta (0)

In English:
f(n)isin @(g (n)) such that:

f(n)isin O(Q(n)) AND f(n) isin Q(g(n))

e, cog(n) < f(n) <0 g(n)
Note: ¢, ¢ is a positive real number, n, and n are natural numbers

M time . a_() {()
|

)

Input Size

vV

Note on “tight bound”

. It’s technically true that n + 2 is O(2")
. But that’s not a very good bound
. A better bound would be O(n)

- It's the upper bound that’s closest to the actual function

. We call the closest (i.e. lowest) asymptotic upper bound the “tight
big-oh bound”

. Similarly the highest asymptotic lower bound is the “tight big-omega
bound”

. On Exercises/Exams, we’ll ask for “simplified tight bound”

When Big-Oh and Big-Omega differs

. Almost never :) https://www.desmos.com/calculator/zo6kikpgay

/(\f\ﬂ

/l\

//\//\/\’

0 //“vA vA /\v/ \v J \v‘

—1

https://www.desmos.com/calculator/zo6kikpgay

Today

* Asymptotic Analysis Review
* Big-Oh Summary

* Cases vs Asymptotic

* Amortization

25

Worst/Best-Case vs Asymptotic Analysis

Completely Different! How?

Worst/Best: all about case (scenario)

Linear Search Best Case: value we are looking for is the first value
BST Worst Case: skewed "linked list"-like structure

Asymptotic Analysis:
Assuming that case (scenario), what happens as n — big?
Big-Oh: what’s the worst growth this algorithm could have?
Big-Omega: what’s the best growth this algorithm could have?

26

Analysis: Cases AND Asymptotic Analysis
Asymptotic Analysis

Lower Upper

Best

Worst

Cases

Today

* Asymptotic Analysis Review
* Big-Oh Summary

* Cases vs Asymptotics

* Amortization

28

Amortization

Motivation: Worst-case too pessimistic (e.g., array resizing)

. max total # steps algorithm takes on M "most challenging”
consecutive inputs of size n, divided by M (i.e., divide the max

total # by M)

. averages the running times of operations in a sequence over
that sequence

Sounds like the average case but is NOT average

29

FYl: Mathematically incorrect but easy to illustrate

Amortization: Example

- insert() in ArrayList of capacity (not size) 5

1. 5xinsert() - (1) each
2. insert() - O(n) (because resize)

(n-1)0@)+0(n)

n

Total runtime? = 0(1)

30

Amortization: Why double size?

The most common strategy for increasing array size is doubling.
Why not just increase the size by 10 each time we fill up?
® Let’s do amortized analysis
® Total cost of n insertions:
n [these are normal inserts] + 10+ 20+ 30+ ... +n

= 0(n?)
e Divide by n
Amortized runtime = O(n)

10

31

Summary (wow that was a lot!)

1. Performance: Time vs Space (usually time)
- Counting Code

2. Best, Worst, Amortized Case (usually worst or amortized)

3. Asymptotic Analysis (usually tight/Big-Theta)
- Confusingly called Big-Oh

Timeline

. Asymptotic Analysis
Big-Oh (and Big-) Definition

Big-Oh Summary
. Cases vs Asymptotics
- Amortization

Priority Queue ADT
- Tree Stuff

Binary Min-Heap Data Structure
- Basics, Properties, Operations
- Array Representation

