
Lecture 3: Algorithm Analysis 2
CSE 332: Data Structures & Parallelism

Yafqa Khan

Summer 2025

1

Announcements

• EX00

• Due Monday

• EX01
• Out later today
• Due Monday, July 7

2

Today

• Asymptotic Analysis Review

• Big-Oh Summary

• Cases vs Asymptotics

• Amortization

3

Recap Summary

4

// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k){
 for(int i=0; i < arr.length; ++i)
 if(arr[i] == k)
 return true;
 return false;
}

Recap: Formally Big-Oh

•

5

6

Big-Oh: Example 1

•

7

Big-Oh: Example 1

8

Observe the following:
3n ≤ 3n, ∀ n ≥ 4.
 4 ≤ n, ∀ n ≥ 4.

Adding these inequalities, we see that,
3n + 4 ≤ 4n, ∀ n ≥ 4.

Therefore, f(n) ∈ O(g(n)), with c = 4 and n
0
 = 4.

Big-Oh: Example 2

•

9

Big-Oh: Example 2 (Solution)

•

10

Observe the following:
4n2 ≤ 4n3, ∀ n ≥ 1.
3n ≤ 3n3, ∀ n ≥ 1.
 4 ≤ 4n3, ∀ n ≥ 1.

Adding these inequalities, we get:

4n2 + 3n + 4 ≤ 11n3, ∀ n ≥ 1.

Therefore, f(n) ∈ O(g(n)), with c = 11 and n
0
 = 1.

Big-Oh: Example 3

11

Let f(n) = n and g(n) = n - 1. Show that f(n) ∈ O(g(n)).

Big-Oh: Example 3 (scratch work)

12

Let f(n) = n and g(n) = n - 1. Show that f(n) ∈ O(g(n)).

Want to find c, n
0
 so that n ≤ c * (n - 1)

Playing with algebra, we can rearrange this as:
n ≤ c * n - c
c ≤ (c - 1) * n

If we try plugging in c = 2, we get:
2 ≤ n

Which is true for n ≥ 2. (So we should pick c, n
0

= 2)

Big-Oh: Example 3 (Proof)

13

Observe that

2 ≤ n, ∀ n ≥ 2

We can rewrite this inequality as

2 ≤ 2n - n, ∀ n ≥ 2

Rearranging, this is equivalent to

n ≤ 2 * (n - 1), ∀ n ≥ 2

Therefore, f(n) ∈ O(g(n)), with c = 2 and n
0
 = 2.

Big-Oh: Example Exercise
•

14

Big-Oh: Example Exercise (Solution)
•

15

Today

• Asymptotic Analysis Review

• Big-Oh Summary

• Cases vs Asymptotics

• Amortization

16

What can you drop?

•

17

Big-Oh: Common Functions

•

18

Beyond Big-Oh: More Asymptotic Notations

19

Formally Big-Oh

20

21

•

22

Note on “tight bound”

• It’s technically true that n + 2 is O(2n)

• But that’s not a very good bound

• A better bound would be O(n)

• It’s the upper bound that’s closest to the actual function

• We call the closest (i.e. lowest) asymptotic upper bound the “tight
big-oh bound”

• Similarly the highest asymptotic lower bound is the “tight big-omega
bound”

• On Exercises/Exams, we’ll ask for “simplified tight bound”

23

When Big-Oh and Big-Omega differs

24

• Almost never :) https://www.desmos.com/calculator/zo6kikpgay

https://www.desmos.com/calculator/zo6kikpgay

Today

• Asymptotic Analysis Review

• Big-Oh Summary

• Cases vs Asymptotic

• Amortization

25

Worst/Best-Case vs Asymptotic Analysis

26

1

2

2

3

4

Analysis: Cases AND Asymptotic Analysis

27

Asymptotic Analysis

Lower Upper

 Cases

Best

Worst

Today

• Asymptotic Analysis Review

• Big-Oh Summary

• Cases vs Asymptotics

• Amortization

28

Amortization

•

29

Amortization: Example

30

FYI: Mathematically incorrect but easy to illustrate

Amortization: Why double size?

31

...

The most common strategy for increasing array size is doubling.
Why not just increase the size by 10 each time we fill up?
● Let’s do amortized analysis
● Total cost of n insertions:

n [these are normal inserts] + 10 + 20 + 30 + … + n

= O(n2)
● Divide by n

Amortized runtime = O(n)

Summary (wow that was a lot!)

1. Performance: Time vs Space (usually time)
• Counting Code

2. Best, Worst, Amortized Case (usually worst or amortized)

3. Asymptotic Analysis (usually tight/Big-Theta)
• Confusingly called Big-Oh

32

Timeline

• Asymptotic Analysis
• Big-Oh (and Big-) Definition

• Big-Oh Summary

• Cases vs Asymptotics

• Amortization

• Priority Queue ADT

• Tree Stuff

• Binary Min-Heap Data Structure
• Basics, Properties, Operations
• Array Representation

33

