Lecture 3: Algorithm Analysis 2

CSE 332: Data Structures & Parallelism

Yafqa Khan

Summer 2025

1

Announcements

- EX00
 - Due Monday
- EX01
 - Out later today
 - Due Monday, July 7

Today

- Asymptotic Analysis Review
- Big-Oh Summary
- Cases vs Asymptotics
- Amortization

Recap Summary

- 1. Count Code
 - 1. How to **count code constructs**

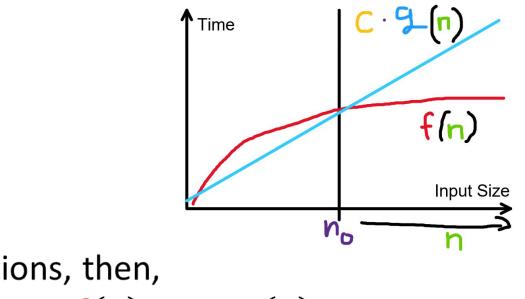
```
// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k){
   for(int i=0; i < arr.length; ++i)
        if(arr[i] == k)
            return true;
   return false;
}</pre>
```

2. Get a count in terms of *n*, usually in the **worst-case**

Worst Case: when integer not in sorted array Count: 1 ops + n iterations \times 3 ops = 1 + 3n

- 1. Big-Oh Group into set (family) of functions
 - 1. Asymptotic Behavior (what happens as $n \rightarrow big$?)
 - 2. Informally: "Drop" coefficients, lower-order terms
 - 3. Formally: Find c and n_0

```
1 + 3n \in \mathcal{O}(n)1 + 3n \text{ is in } \mathcal{O}(n)
```



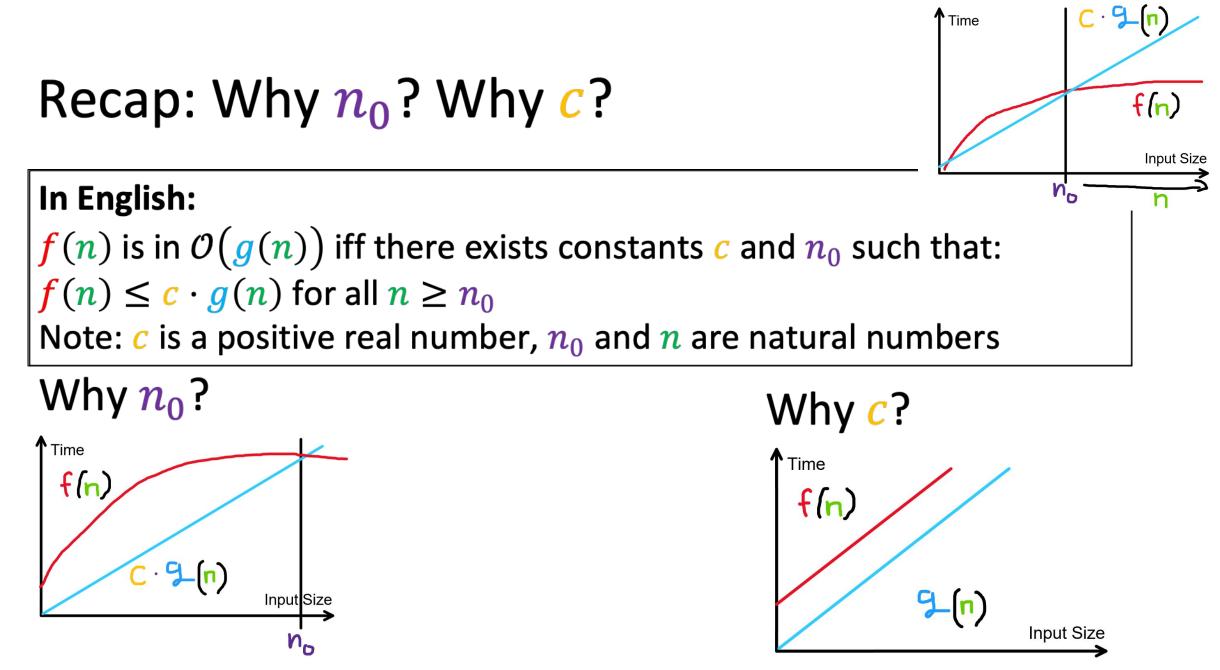
Recap: Formally Big-Oh

Formal Definition:

Suppose $f: \mathbb{N} \to \mathbb{R}, g: \mathbb{N} \to \mathbb{R}$ are two functions, then, $f(n) \in \mathcal{O}(g(n)) \equiv \exists_{c \in \mathbb{R}_{>0}, n_0 \in \mathbb{N}} \forall_{n \in \mathbb{N} \ge n_0} f(n) \le c \cdot g(n)$

In English:

f(n) is in O(g(n)) iff there exists constants c and n_0 such that: $f(n) \le c \cdot g(n)$ for all $n \ge n_0$ Note: c is a positive real number, n_0 and n are natural numbers



In English:

f(n) is in O(g(n)) iff there exists constants c and n_0 such that: $f(n) \leq c \cdot g(n)$ for all $n \geq n_0$ Note: c is a positive real number, n_0 and n are natural numbers

- : How to show f(n) is in O(g(n))?
 - Pick a *c* large enough to "cover the constant factors"
 - Pick a n₀ large enough to "cover the lower-order terms"

Example: Let f(n) = 3n + 4 and g(n) = n, show $f(n) \in O(g(n))$

- How to show f(n) is in O(g(n))?
 - Pick a *c* large enough to "cover the constant factors"
 - Pick a n₀ large enough to "cover the lower-order terms"

Example: Let f(n) = 3n + 4 and g(n) = n, show $f(n) \in O(g(n))$

Observe the following:

 $3n \leq 3n, \forall n \geq 4.$ $4 \leq n, \forall n \geq 4.$ Adding these inequalities, we see that, $3n + 4 \leq 4n, \forall n \geq 4.$ Therefore, $f(n) \in O(g(n))$, with c = 4 and $n_0 = 4$.

Let $f(n) = 4n^2 + 3n + 4$ and $g(n) = n^3$, show $f(n) \in O(g(n))$.

Big-Oh: Example 2 (Solution)

Let $f(n) = 4n^2 + 3n + 4$ and $g(n) = n^3$, show $f(n) \in O(g(n))$.

Observe the following:

 $4n^{2} \leq 4n^{3}, \forall n \geq 1.$ $3n \leq 3n^{3}, \forall n \geq 1.$ $4 \leq 4n^{3}, \forall n \geq 1.$

Adding these inequalities, we get:

 $4n^2 + 3n + 4 \le 11n^3, \forall n \ge 1.$ Therefore, $f(n) \in O(g(n))$, with c = 11 and $n_0 = 1.$

Let f(n) = n and g(n) = n - 1. Show that $f(n) \in O(g(n))$.

Big-Oh: Example 3 (scratch work)

Let f(n) = n and g(n) = n - 1. Show that $f(n) \in O(g(n))$.

Want to find c, n_0 so that $n \le c^* (n - 1)$

Playing with algebra, we can rearrange this as:

$$n \le c * n - c$$

$$c \le (c - 1) * n$$

If we try plugging in c = 2, we get:

2 ≤ n

Which is true for $n \ge 2$. (So we should pick c, $n_0 = 2$)

Big-Oh: Example 3 (Proof)

Observe that

 $2 \le n, \forall n \ge 2$

We can rewrite this inequality as

 $2 \leq 2n - n, \forall n \geq 2$

Rearranging, this is equivalent to

 $n \leq 2 * (n - 1), \forall n \geq 2$

Therefore, $f(n) \in O(g(n))$, with c = 2 and $n_0 = 2$.

Big-Oh: Example Exercise

True or False?

- 1. $4 + 3n \in \mathcal{O}(n)$
- 2. $n+2\log n \in \mathcal{O}(\log n)$
- 3. $\log n + 2 \in \mathcal{O}(1)$
- 4. $n^{50} \in \mathcal{O}(1.1^n)$

Note:

- Do NOT ignore constants that are not multipliers:
 - $n^3 \in \mathcal{O}(n^2)$ is $O(n^2)$: FALSE
 - $3^n \in \mathcal{O}(2^n)$: FALSE

In English: f(n) is in O(g(n)) iff there exists constants c and n_0 such that: $f(n) \le c \cdot g(n)$ for all $n \ge n_0$ Note: c is a positive real number, n_0 and n are natural numbers

Big-Oh: Example Exercise (Solution)

True or False?

- 1. $4 + 3n \in \mathcal{O}(n)$: TRUE
- 2. $n + 2 \log n \in \mathcal{O}(\log n)$: FALSE
- 3. $\log n + 2 \in \mathcal{O}(1)$: FALSE
- 4. $n^{50} \in \mathcal{O}(1.1^n)$: TRUE

Note:

- Do NOT ignore constants that are not multipliers:
 - $n^3 \in \mathcal{O}(n^2)$ is $O(n^2)$: FALSE
 - $3^n \in \mathcal{O}(2^n)$: FALSE

Today

- Asymptotic Analysis Review
- Big-Oh Summary
- Cases vs Asymptotics
- Amortization

What can you drop?

- : Coefficients
 - e.g., $3n^2 vs 4n^2$ is same
- Low-order terms
 - e.g., $n^2 + n \operatorname{vs} n^2$ is same
- NOT constants that are not multipliers
 - e.g., $n^2 vs n^3$ is NOT same
 - e.g., 2^n vs 3^n is NOT same

(Intuitive way to understand the definition)

Big-Oh: Common Functions

• $\mathcal{O}(1)$	Constant	Fastest
• $\mathcal{O}(\log n)$	Logarithmic	
• $\mathcal{O}(n)$	Linear	
• $\mathcal{O}(n \log n)$	" $n\log n$ " or Loglinear	
• $\mathcal{O}(n^2)$	Quadratic	
• $\mathcal{O}(n^3)$	Cubic	
• $\mathcal{O}(n^k)$	Polynomial	
• $\mathcal{O}(k^n)$	Exponential	Slowest

Usage note: "exponential" does not mean "grows really fast", it means "grows at rate proportional to k^n for some k > 1"

Beyond Big-Oh: More Asymptotic Notations

- Upper bound (Big-Oh):
 - Suppose $f: \mathbb{N} \to \mathbb{R}, g: \mathbb{N} \to \mathbb{R}$ are two functions, then,
 - $f(n) \in \mathcal{O}(g(n)) \equiv \exists_{c \in \mathbb{R}_{>0}, n_0 \in \mathbb{N}} \forall_{n \in \mathbb{N} \ge n_0} f(n) \le c \cdot g(n)$
- Lower bound (Big-Omega):
 - Suppose $f: \mathbb{N} \to \mathbb{R}, g: \mathbb{N} \to \mathbb{R}$ are two functions, then,
 - $f(n) \in \Omega(g(n)) \equiv \exists_{c \in \mathbb{R}_{>0}, n_0 \in \mathbb{N}} \forall_{n \in \mathbb{N} \ge n_0} f(n) \ge c \cdot g(n)$
- Big-Theta bound:
 - Suppose $f: \mathbb{N} \to \mathbb{R}$, $g: \mathbb{N} \to \mathbb{R}$ are two functions, then,
 - $f(n) \in \Theta(g(n)) \equiv f(n) \in \mathcal{O}(g(n)) \land f(n) \in \Omega(g(n))$
 - (Can use different *c*)

Formally Big-Oh

In English:

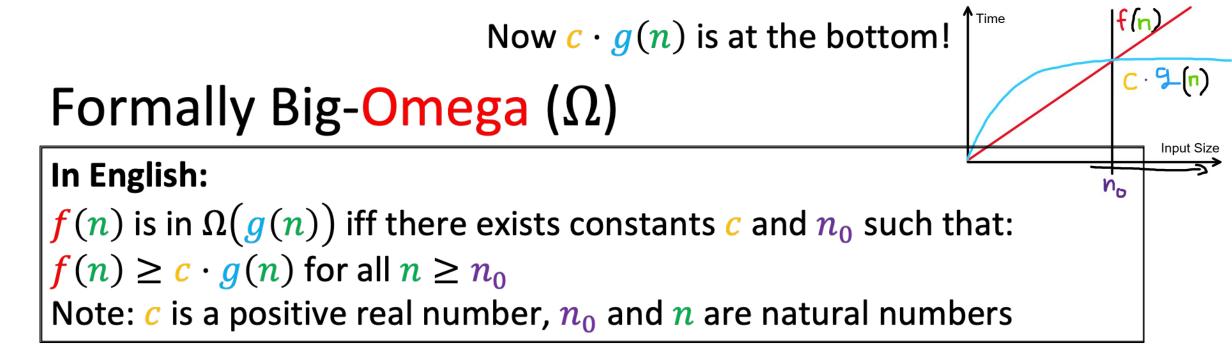
f(n) is in O(g(n)) iff there exists constants c and n_0 such that: $f(n) \leq c \cdot g(n)$ for all $n \geq n_0$ Note: c is a positive real number, n_0 and n are natural numbers

- How to show f(n) is in O(g(n))?
 - Pick a *c* large enough to "cover the constant factors"
 - Pick a n₀ large enough to "cover the lower-order terms"

Example: Let f(n) = 3n + 4 and g(n) = n, show $f(n) \in O(g(n))$.

• Let c = 4 and $n_0 = 5$. Then, $3n + 4 \le 4 \cdot n$ for all $n \ge 5$.

Notice: If g(n) becomes bigger (e.g., $g(n) = n^5$ or $g(n) = 2^n$), same result



Example: Let
$$f(n) = 3n + 4$$
 and $g(n) = n$, show $f(n) \in \Omega(g(n))$.

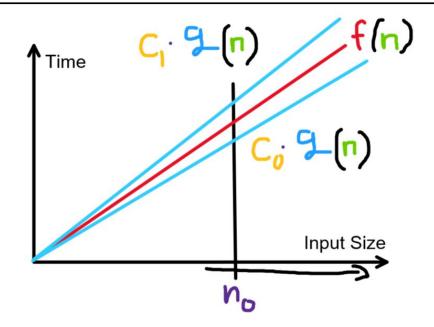
• Let c = 1 and $n_0 = 1$. Then, $3n + 4 \ge 1 \cdot n$ for all $n \ge 1$.

Notice: If g(n) becomes smaller (e.g., $g(n) = \log n$ or g(n) = 1), same result

Formally Big-Theta (Θ)

In English:

f(n) is in $\Theta(g(n))$ such that: f(n) is in O(g(n)) AND f(n) is in $\Omega(g(n))$ i.e., $c_0g(n) \le f(n) \le c_1g(n)$ Note: c_0, c_1 is a positive real number, n_0 and n are natural numbers

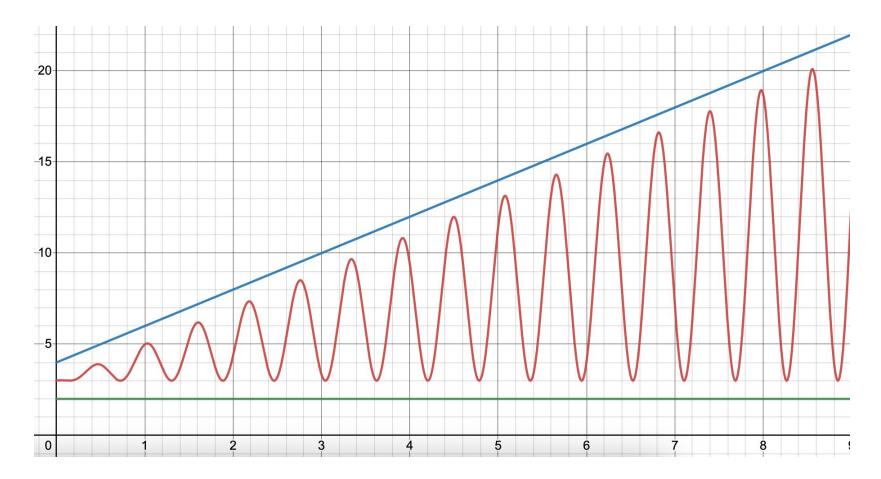


Note on "tight bound"

- It's technically true that n + 2 is $O(2^n)$
- But that's not a very good bound
- A better bound would be O(n)
 - It's the upper bound that's closest to the actual function
- We call the closest (i.e. lowest) asymptotic upper bound the "tight big-oh bound"
- Similarly the highest asymptotic lower bound is the "tight big-omega bound"
- On Exercises/Exams, we'll ask for "simplified tight bound"

When Big-Oh and Big-Omega differs

Almost never :) <u>https://www.desmos.com/calculator/zo6kikpgay</u>



Today

- Asymptotic Analysis Review
- Big-Oh Summary
- Cases vs Asymptotic
- Amortization

Worst/Best-Case vs Asymptotic Analysis

- Completely Different! How?
- Worst/Best: all about case (scenario)
 - Linear Search Best Case: value we are looking for is the first value
 - BST Worst Case: skewed "linked list"-like structure
- Asymptotic Analysis:
 - Assuming that case (*scenario*), what happens as $n \rightarrow big$?
 - Big-Oh: what's the worst growth this algorithm could have?
 - Big-Omega: what's the best growth this algorithm could have?

Analysis: Cases AND Asymptotic Analysis

Asymptotic Analysis

Today

- Asymptotic Analysis Review
- Big-Oh Summary
- Cases vs Asymptotics
- Amortization

Amortization

Motivation: Worst-case too pessimistic (e.g., array resizing)

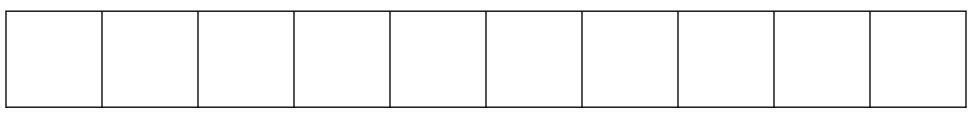
- max total # steps algorithm takes on M "most challenging" consecutive inputs of size n, divided by M (i.e., divide the max total # by M)
- averages the running times of operations in a sequence over that sequence

Sounds like the average case but is **NOT** average

Amortization: Example

insert() in ArrayList of capacity (not size) 5

- 1. 5x insert() $\mathcal{O}(1)$ each
- 2. insert() $\mathcal{O}(n)$ (because resize)



Total runtime?
$$\frac{(n-1)\mathcal{O}(1) + \mathcal{O}(n)}{n} = \mathcal{O}(1)$$

Amortization: Why double size?

The most common strategy for increasing array size is **doubling**. Why not just increase the size by 10 each time we fill up?

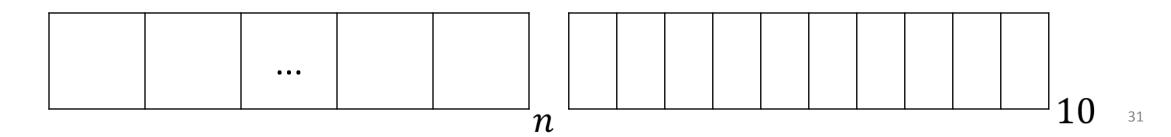
- Let's do amortized analysis
- Total cost of *n* insertions:

n [these are normal inserts] + 10 + 20 + 30 + ... + *n*

 $= O(n^2)$

• Divide by *n*

Amortized runtime = O(*n*)



Summary (wow that was a lot!)

- 1. Performance: Time vs Space (usually time)
 - Counting Code
- 2. Best, Worst, Amortized Case (usually worst or amortized)
- 3. Asymptotic Analysis (usually tight/Big-Theta)
 - Confusingly called Big-Oh

Timeline

- Asymptotic Analysis
 - Big-Oh (and Big-) Definition
- Big-Oh Summary
- Cases vs Asymptotics
- Amortization
- Priority Queue ADT
- Tree Stuff
- Binary Min-Heap Data Structure
 - Basics, Properties, Operations
 - Array Representation