
Lecture 2: Algorithm Analysis
CSE 332: Data Structures & Parallelism

Yafqa Khan

Summer 2025

1

Announcements

• EX00

• due monday

• EX01
• released friday

• Please email me (if you haven’t already) if you need a makeup exam

2

Today

• What do we care about?

• Analyzing Code

• Counting code constructs

• Best Case vs. Worst Case

• Asymptotic Analysis

• Big-Oh Definition

3

What do we care about?

• Correctness:

• Does the algorithm do what is intended?

• Performance:

• Speed time complexity

• Memory space complexity

• Why analyze?

• To make good design decisions

• Enable you to look at an algorithm (or code) and identify the bottlenecks, etc.

4

Q: How should we compare two algorithms?

Problem: Sort list of all students has ever taken CSE332

5

A: How should we compare two algorithms?

•

6

Today

• What do we care about?

• Analyzing Code

• Counting code constructs

• Best Case vs. Worst Case

• Asymptotic Analysis

• Big-Oh Definition

7

Analyzing Code: Counting code constructs
Assume basic operations take some amount of constant time

• Arithmetic (1+1), assignment (int b = 3), array index(arr[i]), etc.

This approximates reality: a very useful "lie"

8

Code Construct How much Time?

Consecutive Statements Sum of time of each statement

Loops Sum of time of each iteration

Conditionals Time to evaluate conditional +
whichever branch executes

Function (method) Calls Time of function’s body

Recursion Solve recurrence equation

Examples

9

for (i = 0; i < n; i++) {
 sum++;
}

b = b + 5
c = b / a
b = c + 100

if (j < 5) {
 sum++;
} else {
 for (i = 0; i < n; i++) {
 sum++;
 }
}

Number of operations? Big Oh?

10

int coolFunction(int n, int sum) {
 int i, j;
 for (i = 0; i < n; i++) {
 for (j = 0; j < n; j++)
 sum++;
 }
 }
 print "This program is great!"
 for (i = 0; i < n; i++) {
 sum++;
 }
 return sum
}

Loops: Using Summations

11

for (i = 0; i < n; i++) {
 sum++;
}

Any Questions?

12

Complexity Cases (e.g., Worst vs. Best Case)

•

13

Other Complexity Cases

• Average-case complexity:
• What does "average" mean?
• What is an "average" dataset?
• No agreement on a specific scenario

• Amortized-case complexity:
• Worst-case in a sequence

• Later

14

Linear search – Best Case & Worst Case

Find an integer in a sorted array

2 3 5 16 37 50 73 75 126

// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k){
 for(int i=0; i < arr.length; ++i)
 if(arr[i] == k)
 return true;
 return false;
}

Best case:

Worst case:
 15

Remember a faster search algorithm?

•

16

Ignoring constant factors

•

17

Example - Why we ignore constant factors

18

tim
e,

 lo
w

er
 =

 b
et

te
r

tim
e,

 lo
w

er
 =

 b
et

te
r

Logarithms and Exponents

19

Logarithms and Exponents

20

Speaking of Logarithms...

•

21

Review: Logarithms

•

22

Today

• What do we care about?

• Analyzing Code

• Counting code constructs

• Best Case vs. Worst Case

• Asymptotic Analysis

• Big-Oh Definition

23

Asymptotic Analysis

•

24

Asymptotic Analysis: Big-Oh

25

Today

• What do we care about?

• Analyzing Code

• Counting code constructs

• Best Case vs. Worst Case

• Asymptotic Analysis

• Big-Oh Definition

26

Formally Big-Oh

•

27

28

29

30

Timeline

• What do we care about?

• Analyzing Code
• Counting code constructs
• Best Case vs. Worst Case

• Asymptotic Analysis
• Big-Oh (and Big-) Definition

• Big-Oh Summary

• Cases vs Asymptotics

• Amortization

31

