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Announcements

- EXOO

- due monday

. EXO1

- released friday
. Please email me (if you haven’t already) if you need a makeup exam



Today

* What do we care about?
* Analyzing Code
* Counting code constructs
* Best Case vs. Worst Case
* Asymptotic Analysis
* Big-Oh Definition



What do we care about?

* Correctness:

* Does the algorithm do what is intended?
* Performance:

* Speed time complexity

* Memory space complexity
* Why analyze?

* To make good design decisions

* Enable you to look at an algorithm (or code) and identify the bottlenecks, etc.



Q: How should we compare two algorithms?

Problem: Sort list of all students has ever taken CSE332



A: How should we compare two algorithms?

Why not run and time the program?

Too much variability, dependent on:
Hardware, OS, exact implementation, etc.

Miss worst-case input
What happens when n doubles in size?

We want to evaluate the algorithm, not the implementation
i.e., evaluate even before coding it

What does "better" mean?
Many answers: clarity, security, simplicity, etc.
Performance: for big inputs, runs in less time (our focus) or less space
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Analyzing Code: Counting code constructs

Assume basic operations take some amount of constant time
. Arithmetic (1+1), assignment (int b = 3), array index(arr[i]), etc.

This approximates reality: a very useful "lie"

Consecutive Statements Sum of time of each statement
Loops Sum of time of each iteration
Conditionals Time to evaluate conditional +
whichever branch executes
Function (method) Calls Time of function’s body

Recursion Solve recurrence equation
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Number of operations? Big Oh?

int coolFunction(int n, int sum) {

int i, 7>
for (1 = 0; 1 < n; 1++) {

for (3 = 0; 73 < n; J++)

sum++;

}
}
print "This program 1s great!"
for (1 = 0; i < n; 1i++) {

sum++;

}

return sum




Loops: Using Summations

for (1 = 0; 1 < n; 1i++) {
sum++;

}




Any Questions?



Complexity Cases (e.g., Worst vs. Best Case)

We’'ll start by focusing on two cases:

Worst-case complexity:
max # steps algorithm takes on "most challenging” input of sizen

Best-case complexity:
min # steps algorithm takes on "easiest" input of size n



Other Complexity Cases

- Average-case complexity:
What does "average" mean?
What is an "average" dataset?
No agreement on a specific scenario

- Amortized-case complexity:

Worst-case in a sequence
Later



Linear search — Best Case & Worst Case

2 |3 | 5|16 37| 50,73 | 75|126

Find an integer in a sorted array

// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k) {
for (int i=0; i < arr.length; ++i)
if (arr[i] == k)
return true;

return false; Best case:

Worst case:




Remember a faster search algorithm?

Worst Cases:
. Binary Search - O(logn)
. Linear Search — 0(n)



lgnoring constant factors

So binary search is O(logn) and linear is O (n)
But which will be faster?

Depending on constant factors and size of n, in a particular situation, linear
search could be faster....

How many assignments, additions, etc. for eachn?
What if n is small?

But there exists an ny such that for all n = n, binary search is faster
i.e., eventually n will get big enough that binary search is faster

Let’s look at a couple plots to get some intuition...
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Example - Why we ignore constant factors

Small values of n Big values of n

time, lower = better
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n, number of elements to search n, number of elements to search
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Logarithms and Exponents
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Logarithms and Exponents

Small values of n

Big values of n
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Speaking of Logarithmes...

" Since so much is binary in CS, log almost always means log,
So, log,(1,000,000) = "a little under 20"
Just as exponents grow very quickly, logarithms grow very slowly

They don't matter much!
“Any base B log is equivalent to log, with a constant factor”

e.g., log,(x) = 3.22logo(x)
Can convert logg(x) =

o8 5) log,(x) = constant - log,(x)
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Review: Logarithms

* log(A - B) = log(A) + log(B)
. log (%) = log(4) — log(B)

. log(N*) = klog(N)

. log,(2%) = x

. log(log(x)) orloglog x

. Grows slower than log(x)

. log(x) - log(x) orlog?(x)

. Grows faster than log(x)

log x

log log x

log x * l6g x

log X
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Asymptotic Analysis

Formal definition soon, intuition is:
1.  Eliminate low-order terms
2.  Eliminate constant coefficients

Examples:
4n + 5
0.5nlogn+2n+7
n3+ 2"+ 3n
nlog(10n?)
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Asymptotic Analysis: Big-Oh

We use O on a function f(n) (e.g., n?) to mean the set of functions
with asymptotic behavior les e of(n)

e.g., (3n? +17)isin O(n?) (or in math, (3n? + 17) € 0(n?))

- means (3n? + 17) and (n?) have the same asymptotic behavior

Confusingly, we also say/write:
(3n?% + 17) is O(n?)
(3n?% +17) = 0(n?)
« But we would never say 0(n?) = (3n? + 17)

25



Today

* What do we care about?
* Analyzing Code
* Counting code constructs
* Best Case vs. Worst Case
* Asymptotic Analysis
* Big-Oh Definition

26



A Time : rj_( )

Formally Big-Oh /_ =

Formal Definition: ’ - S
o

Suppose f:N - R, g: N = R are two functions, then,
f(n) E O(g(n)) = 3 ER>O,nOENVnENZnOf(n) S | g(n)

In English:
f(n)isin O(g (n)) iff there exists constants © and n, such that:

f(n) <c-gn)foralln = n,
Note: ¢ is a positive real number, ny and n are natural numbers
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0

Why n,? Why ¢? /" €6
In English: "o >
f(n)isin O(g(n)) iff there exists constants c and n, such that:
f(n)<c-gn)foralln =n,
Note:  is a positive real number, n, and n are natural numbers
Why n,? Why < ?
A‘Time | — ATime
fir) £
|
Input SIZi (‘j_( ) |
no InputS|z§
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Input Size



Timeline

. What do we care about?
- Analyzing Code

- Counting code constructs
Best Case vs. Worst Case

. Asymptotic Analysis
Big-Oh (and Big-) Definition

Big-Oh Summary
.- Cases vs Asymptotics
- Amortization



