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Announcements

• EX00

• due monday

• EX01
• released friday

• Please email me (if you haven’t already) if you need a makeup exam
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Today

• What do we care about?

• Analyzing Code

• Counting code constructs

• Best Case vs. Worst Case

• Asymptotic Analysis

• Big-Oh Definition
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What do we care about?

• Correctness:

• Does the algorithm do what is intended?

• Performance:

• Speed time complexity

• Memory space complexity

• Why analyze?

• To make good design decisions

• Enable you to look at an algorithm (or code) and identify the bottlenecks, etc.
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Q: How should we compare two algorithms?

Problem: Sort list of all students has ever taken CSE332
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A: How should we compare two algorithms?

•  
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Today

• What do we care about?

• Analyzing Code

• Counting code constructs

• Best Case vs. Worst Case

• Asymptotic Analysis

• Big-Oh Definition
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Analyzing Code: Counting code constructs
Assume basic operations take some amount of constant time

• Arithmetic (1+1), assignment (int b = 3), array index(arr[i]), etc.

This approximates reality: a very useful "lie"
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Code Construct How much Time?

Consecutive Statements Sum of time of each statement

Loops Sum of time of each iteration

Conditionals Time to evaluate conditional + 
whichever branch executes

Function (method) Calls Time of function’s body

Recursion Solve recurrence equation



Examples
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for (i = 0; i < n; i++) {
  sum++;
}

b = b + 5
c = b / a
b = c + 100

if (j < 5) {
  sum++;
} else {
  for (i = 0; i < n; i++) {
    sum++;
  }
}



Number of operations? Big Oh?
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int coolFunction(int n, int sum) {
  int i, j; 
  for (i = 0; i < n; i++) {
    for (j = 0; j < n; j++)
      sum++;
    }
  }
  print "This program is great!"
  for (i = 0; i < n; i++) {
    sum++;
  }
  return sum
}



Loops: Using Summations
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for (i = 0; i < n; i++) {
  sum++;
}



Any Questions?

12



Complexity Cases (e.g., Worst vs. Best Case)

•  
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Other Complexity Cases

• Average-case complexity: 
• What does "average" mean? 
• What is an "average" dataset?
• No agreement on a specific scenario

• Amortized-case complexity: 
• Worst-case in a sequence

• Later
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Linear search – Best Case & Worst Case

Find an integer in a sorted array
     

2 3 5 16 37 50 73 75 126

// requires array is sorted     
// returns whether k is in array
boolean find(int[]arr, int k){
   for(int i=0; i < arr.length; ++i)
      if(arr[i] == k)
        return true;
   return false;
}

Best case:

Worst case:
     15



Remember a faster search algorithm?

•  
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Ignoring constant factors

•  
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Example - Why we ignore constant factors
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Logarithms and Exponents
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Logarithms and Exponents

20

  



Speaking of Logarithms...

•  
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Review: Logarithms

•  

22



Today

• What do we care about?

• Analyzing Code

• Counting code constructs

• Best Case vs. Worst Case

• Asymptotic Analysis

• Big-Oh Definition
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Asymptotic Analysis

•  

24



Asymptotic Analysis: Big-Oh
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Formally Big-Oh

•  
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Timeline

• What do we care about?

• Analyzing Code
• Counting code constructs
• Best Case vs. Worst Case

• Asymptotic Analysis
• Big-Oh (and Big-) Definition

• Big-Oh Summary

• Cases vs Asymptotics

• Amortization
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