Lecture 2: Algorithm Analysis

CSE 332: Data Structures & Parallelism

Yafqa Khan

Summer 2025

1

Announcements

- EX00
 - due monday
- EX01
 - released friday
- Please email me (if you haven't already) if you need a makeup exam

Today

- What do we care about?
- Analyzing Code
 - Counting code constructs
 - Best Case vs. Worst Case
- Asymptotic Analysis
- Big-Oh Definition

What do we care about?

- Correctness:
 - Does the algorithm do what is intended?
- Performance:
 - Speed time complexity
 - Memory space complexity
- Why analyze?
 - To make good design decisions
 - Enable you to look at an algorithm (or code) and identify the bottlenecks, etc.

Q: How should we compare two algorithms?

Problem: Sort list of all students has ever taken CSE332

A: How should we compare two algorithms?

- Why not run and time the program?
 - Too much variability, dependent on:
 - Hardware, OS, exact implementation, etc.
 - Miss worst-case input
 - What happens when *n* doubles in size?
- We want to evaluate the algorithm, not the implementation
 - i.e., evaluate even before coding it
- What does "better" mean?
 - Many answers: clarity, security, simplicity, etc.
 - Performance: for big inputs, runs in less time (our focus) or less space

Today

- What do we care about?
- Analyzing Code
 - Counting code constructs
 - Best Case vs. Worst Case
- Asymptotic Analysis
- Big-Oh Definition

Analyzing Code: Counting code constructs

Assume basic operations take some amount of constant time

• Arithmetic (1+1), assignment (int b = 3), array index(arr[i]), etc.

This approximates reality: a very useful "lie"

Code Construct	How much Time?
Consecutive Statements	Sum of time of each statement
Loops	Sum of time of each iteration
Conditionals	Time to evaluate conditional + whichever branch executes
Function (method) Calls	Time of function's body
Recursion	Solve recurrence equation

Examples

$$b = b + 5$$

 $c = b / a$
 $b = c + 100$

for (i = 0; i < n; i++) {
 sum++;
}</pre>

```
if (j < 5) {
   sum++;
} else {
   for (i = 0; i < n; i++) {
      sum++;
   }
}</pre>
```

Number of operations? Big Oh?

```
int coolFunction(int n, int sum) {
 int i, j;
  for (i = 0; i < n; i++) {
   for (j = 0; j < n; j++)
      sum++;
 print "This program is great!"
  for (i = 0; i < n; i++)  {
    sum++;
  return sum
```

Loops: Using Summations

for (i = 0; i < n; i++) {
 sum++;</pre>

}

Any Questions?

Complexity Cases (e.g., Worst vs. Best Case)

We'll start by focusing on two cases:

- Worst-case complexity:
 - max # steps algorithm takes on "most challenging" input of size n
- Best-case complexity:
 - min # steps algorithm takes on "easiest" input of size n

Other Complexity Cases

• Average-case complexity:

- What does "average" mean?
- What is an "average" dataset?
- No agreement on a specific scenario

Amortized-case complexity:

- Worst-case in a sequence
 - Later

Linear search – Best Case & Worst Case

Find an integer in a *sorted* array

```
// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k) {
   for(int i=0; i < arr.length; ++i)
        if(arr[i] == k)
        return true;
   return false;
        Best case:
}
Worst case:</pre>
```

Remember a faster search algorithm?

Worst Cases:

- Binary Search $\mathcal{O}(\log n)$
- Linear Search $\mathcal{O}(n)$

Ignoring constant factors

- : So binary search is $\mathcal{O}(\log n)$ and linear is $\mathcal{O}(n)$
 - But which will be faster?
 - Depending on constant factors and size of n, in a particular situation, linear search could be faster....
 - How many assignments, additions, etc. for each *n*?
 - What if *n* is small?
- But there exists an n_0 such that for all $n \ge n_0$ binary search is faster
 - i.e., eventually n will get big enough that binary search is faster
- Let's look at a couple plots to get some intuition...

Example - Why we ignore constant factors

Logarithms and Exponents

Logarithms and Exponents

Small values of n

Big values of *n*

Speaking of Logarithms...

- : Since so much is binary in CS, log almost always means log₂
 - So, log₂(1,000,000) = "a little under 20"
 - Just as exponents grow very quickly, logarithms grow very slowly
- They don't matter much!
 - "Any base *B* log is equivalent to log₂ with a <u>constant factor</u>"
 - e.g., $\log_2(x) = 3.22 \log_{10}(x)$
 - Can convert $\log_B(x) = \frac{1}{\log_2(B)} \cdot \log_2(x) = constant \cdot \log_2(x)$

Review: Logarithms

- $: \log(A \cdot B) = \log(A) + \log(B)$
- $\log\left(\frac{A}{B}\right) = \log(A) \log(B)$
- $\cdot \log(N^k) = k \log(N)$
- $\cdot \log_2(2^x) = x$
- $\log(\log(x))$ or $\log\log x$
 - Grows slower than log(x)
- $\log(x) \cdot \log(x)$ or $\log^2(x)$
 - Grows faster than log(x)

Today

- What do we care about?
- Analyzing Code
 - Counting code constructs
 - Best Case vs. Worst Case
- Asymptotic Analysis
- Big-Oh Definition

Asymptotic Analysis

Formal definition soon, intuition is:

- 1. Eliminate low-order terms
- 2. Eliminate constant coefficients

Examples:

- 4*n* + 5
- $0.5n\log n + 2n + 7$
- $n^3 + 2^n + 3n$
- $n\log(10n^2)$

Asymptotic Analysis: Big-Oh

We use \mathcal{O} on a function f(n) (e.g., n^2) to mean the set of functions with asymptotic behavior less than or equal to f(n)

e.g., $(3n^2 + 17)$ is in $\mathcal{O}(n^2)$ (or in math, $(3n^2 + 17) \in \mathcal{O}(n^2)$)

• means $(3n^2 + 17)$ and (n^2) have the same **asymptotic behavior**

Confusingly, we also say/write:

- $(3n^2 + 17)$ is $O(n^2)$
- $(3n^2 + 17) = O(n^2)$
 - But we would never say $\mathcal{O}(n^2) = (3n^2 + 17)$

Today

- What do we care about?
- Analyzing Code
 - Counting code constructs
 - Best Case vs. Worst Case
- Asymptotic Analysis
- Big-Oh Definition

Suppose $f: \mathbb{N} \to \mathbb{R}$, $g: \mathbb{N} \to \mathbb{R}$ are two functions, then, $f(n) \in \mathcal{O}(g(n)) \equiv \exists_{c \in \mathbb{R}_{>0}, n_0 \in \mathbb{N}} \forall_{n \in \mathbb{N} \ge n_0} f(n) \le c \cdot g(n)$

In English:

Formally Big-Oh

Formal Definition:

f(n) is in O(g(n)) iff there exists constants c and n_0 such that: $f(n) \le c \cdot g(n)$ for all $n \ge n_0$ Note: c is a positive real number, n_0 and n are natural numbers

Why n_0 ?

Timeline

- What do we care about?
- Analyzing Code
 - Counting code constructs
 - Best Case vs. Worst Case
- Asymptotic Analysis
 - Big-Oh (and Big-) Definition
- Big-Oh Summary
- Cases vs Asymptotics
- Amortization