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Announcements
• EX11 Due Wednesday
• EX12 Released Today, due Friday
•Note: No late days or extensions on EX12
•We made it shorter than previous quarters

• Last call for Exam 2 makeups
-https://courses.cs.washington.edu/courses/cse332/25su/exams/final.html
-Note: it will be hard to accommodate makeups; only four days to grade
-If you can’t make proposed makeup dates (e.g., sickness/emergency), some options:
-Option 1: Exam 1 is worth 40% instead of 20% of overall grade
-Option 2: Take the final exam in the next CSE 332 offering

https://courses.cs.washington.edu/courses/cse332/25su/exams/final.html


P vs. NP



Definition Dump



Efficient
We’ll consider a problem “efficiently solvable” if it has a polynomial time 
algorithm.
I.e. an algorithm that runs in time 𝑂(𝑛!) where 𝑘 is a constant.
Are these algorithms always actually efficient?
Well………no

Your 𝑛"#### algorithm or even your 2$!
!!

⋅ 𝑛% algorithm probably aren’t 
going to finish anytime soon.
But these edge cases are rare, and polynomial time is good as a low bar
-If we can’t even find an 𝑛"#### algorithm, we’re probably not getting 
one that is efficient in practice anyway.



Some definitions
A problem is a set of inputs and the correct outputs.
“Find a Minimum Spanning Tree” is a problem. 
-Input is a graph, output is the MST.

-“Tell whether a list is sorted” is a problem.
-Input is an array, output is “yes” or “no”

-“Sort this array” is a problem.
-Input is an array, output is the same numbers, now in sorted order.



Some definitions
An instance is a single input to a problem.
A single, particular graph is an instance of the MST problem

-A single, particular graph with vertices s and t is an instance of the 
Shortest Path problem.

-A single, particular array is an instance of the “is the array sorted?” 
problem.

13 24 31 30 35 39 51 Not Sorted



Decision Problems
Let’s go back to dividing problems into solvable/not solvable.
For today, we’re going to talk about decision problems.
Problems that have a “yes” or “no” answer.
Why?
Theory reasons (ask me later).
But also most problems can be rephrased as very similar decision 
problems.
E.g. instead of “find the shortest path from s to t” ask
Is there a path from s to t of length at most 𝑘? 



P

The set of all decision problems that have an algorithm that runs 
in time 𝑂 𝑛!  for some constant 𝑘.

P (stands for “Polynomial”)

The decision version of all problems we’ve solved in this class are in P.

P is an example of a “complexity class”
A set of problems that can be solved under some limitations (e.g. with 
some amount of memory or in some amount of time).

Remember the decision part! It’s important Be careful looking through old finals, prior quarters didn’t include the decision requirement in the definition!

Formally, question is whether 
algorithm exists, not whether 

it’s known to humanity.



I’ll know it when I see it.
Another class of problems we want to talk about.
“I’ll know it when I see it” Problems.

Decision Problems such that:
If the answer is YES, you can prove the answer is yes by 
-Being given a “proof” or a “certificate”
-Verifying that certificate in polynomial time. 

What certificate would be convenient for short paths? 
-The path itself. Easy to check the path is really in the graph and really 
short.



I’ll know it when I see it.
More formally,

Intuitively: you can show me why the answer is yes, and I can verify it.
3-COLOR is an NP problem

“Is there a Spanning Tree of cost at most 25?” is an NP problem

The set of all decision problems such that if the answer is YES, 
there is a proof of that which can be verified in polynomial time.

NP (stands for “nondeterministic polynomial”)



I’ll know it when I see it.
More formally,

Intuitively: you can show me why the answer is yes, and I can verify it.
3-COLOR is an NP problem
Give me the coloring (u is red, v is blue,…) and check each edge.
“Is there a spanning tree of cost at most 25?” is an NP problem
Give me the tree, I’ll see if it’s a spanning tree (run BFS, every vertex 
visited, no cycles, etc.); and see if the weight is small enough.

The set of all decision problems such that if the answer is YES, 
there is a proof of that which can be verified in polynomial time.

NP (stands for “nondeterministic polynomial”)



I’ll know it when I see it.
More formally,

It’s a common misconception that NP stands for “not polynomial”
Please never ever ever ever say that.
Please.

The set of all decision problems such that if the answer is YES, 
there is a proof of that which can be verified in polynomial time.

NP (stands for “nondeterministic polynomial”)



NP
We can verify YES instances of NP problems efficiently, but can we 
decide whether the answer is YES or NO efficiently?
That is, can we do it without the hint? 
I.e. can you bootstrap the ability to check a certificate into the ability to 
find a certificate efficiently?

We don’t know.
This is the P vs. NP problem.



P vs. NP

Claim: P ⊆ NP (do you see why?)

The set of all decision problems such that if the answer is YES, 
there is a proof of that which can be verified in polynomial time.

NP (stands for “nondeterministic polynomial”)

The set of all decision problems that have an algorithm that 
runs in time 𝑶 𝒏𝒌  for some constant 𝑘.

P (stands for “Polynomial”)



P vs. NP
Some problems in NP we know how to solve in polynomial time (solve 
from scratch, not just verify)
“Is there a spanning tree of cost at most 25?” can be solved with Prim’s.
-It’s in P.

Other problems we don’t know how to solve in polynomial time.
We don’t know whether 3-COLOR is in P (most people don’t think it is).
But maybe it is, and we just don’t know the algorithm.
P vs. NP asks this question in general: does knowing you can verify a 
solution guarantee that you can find a solution?



EXP
There is an algorithm to solve 3-COLOR, it’s just slow
Think of a correct ( just inefficient) algorithm to solve 3-COLOR

Generate all 3^n possible colorings, if one of them works, great! Return 
true. 
If none of them work, return false.

This algorithm takes exponential time 



EXP

3-COLOR is in EXP (we just saw why on the last slide)
So is 
Claim: NP ⊆ EXP (do you see why?)

The set of all decision problems that have an algorithm that 
runs in time 𝑶 𝟐𝒏^𝒌  for some constant 𝑘.

EXP (stands for “Exponential”)



Reductions
Let’s say we want to prove that some problem in NP needs exponential time 
(i.e. that P is not equal to NP). 
Ideally we’d start with a really hard problem in NP. 
What does it mean for one problem to be harder than another?

I could solve problem A efficiently, if you give me a library that solves problem 
B efficiently

We say A reduces to B in polynomial time, if there is an algorithm 
that, using a (hypothetical) polynomial-time algorithm for B, 
solves problem A in polynomial-time.

Polynomial Time Reducible

Make sure you have the direction 
right, it’s counter-intuitive!



Reductions

If A reduces to B then A should be “easier” than B. (for us as algorithm 
designers)
-If we can solve B, we can definitely solve A.
Usually denoted A ≤)B.

We say A reduces to B in polynomial time, if there is an algorithm 
that, using a (hypothetical) polynomial-time algorithm for B, 
solves problem A in polynomial-time.

Polynomial Time Reducible



The Direction Matters!
Direction matters, and is often confusing:
𝐴 ≤ 𝐵 “A reduces to B”
I wrote an algorithm to solve problem A using a library designed to 
solve problem B
“A is no harder than B” (solving B guarantees you can solve A, but 
maybe there’s a different way to solve A)

How do you remember the direction?
repeat “Reduction from A to B means writing an algorithm for problem 
A using an algorithm designed for problem B” to yourself 50 times until 
it’s stuck in your brain.



We reduced shortest paths on (integer-weighted) graphs to 
shortest paths on unweighted graphs
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NP-complete
Let’s say we want to prove that some problem in NP needs exponential 
time (i.e. that P is not equal to NP). 
Ideally we’d start with a really hard problem in NP. 
What is the hardest problem in NP?

A problem B is NP-complete if B is in NP and 
for all problems A in NP, A reduces to B in polynomial time. 

NP-complete



NP-complete
An NP-complete problem is a hardest problem in NP.
Seems like the right place to start for proving P≠NP.

It’s also the right place to start for proving P=NP.
A polynomial time algorithm for one NP-complete problem, gives you a 
polynomial time algorithm for every problem in NP. 



Reductions Redux
To show problem B is NP-hard
Reduce from A, a known NP-hard problem, to B.
From the known-hard problem to your new problem—must be that 
direction!

How do you remember the direction?
Robbie recommends you memorize “reduce from known problem to 
new problem” by repeating it to yourself 50 times.
Alternatively reconstruct that proof by contradiction from the last slide 
to see which direction is needed.

Or think of it as a contrapositive:If we have an algorithm for 𝐵, then we also have one for 𝐴.If we don’t (expect) to have an algorithm for 𝐴, then we don’t (expect) to have one for 𝐵.



Examples

Given a directed graph, 
report if there is a path from 
s to t of length at most 𝑘.

Short Path
Given a directed graph, 
report if there is a path from 
s to t of length at least	𝑘.

Long Path
In P NP-Complete

There are literally thousands of NP-complete problems.
And some of them look weirdly similar to problems we do know 
efficient algorithms for.



Examples

Given a weighted graph, is 
there a spanning tree (a set 
of edges that connect all 
vertices) of weight at most 𝑘.

Light Spanning Tree
Given a weighted graph, is 
there a tour (a walk that visits 
every vertex and returns to its 
start) of weight at most 𝑘.

Traveling Salesperson

The electric company just needs a greedy algorithm to lay its wires.
Amazon doesn’t know a way to optimally route its delivery trucks.

In P NP-Complete



Examples

Given a graph, decide if you 
can color the vertices red and 
blue so every edge has 
different colored endpoints

2-Coloring
Given a graph, decide if you 
can color the vertices red, 
blue, and green so every 
edge has different colored 
endpoints.

3-Coloring

2-Coloring can be done with a modification of BFS (or DFS). Color the 
start vertex red, its neighbors must be blue, their neighbors red, etc.
No one knows how to tell if a graph is 3-colorable efficiently.

In P NP-Complete



NP-hard
One more class:

Problem B is NP-hard if
for all problems A in NP, A reduces to B in polynomial time. 

NP-hard

An NP-hard problem need not be in NP.
Examples?
Find the “best possible” certificate for an NP-hard problem.
 Instead of a path of length at least 𝑘,	find the longest path.
 Instead of a tour of weight at most 𝑘, find the shortest tour.



NP-hard

Problem B is NP-complete if
for all problems A in NP, A reduces to B in polynomial time. 

NP-hard

Other Examples:
The halting problem is NP-hard (but not NP-complete).
So is n x n chess. 

Given an n x n chessboard, can white force a win with perfect 
play?

n x n Chess



What The World Looks Like (We Think)

PP
Short Paths, 

Light 
Spanning Tree, 

2-COLOR

NP-Complete

NP-hard
Halting Problem
nxn chess 

3-COLOR, TSP
Long PathNP



What The World Looks Like (If P=NP)

PP
Short Paths, Light 

Spanning Tree, 2-SAT
TSP, 3-SAT, Long Paths

Still hard:
nxn chess

Still impossible:
Halting Problem



Why P vs. NP matters



The set of all decision problems such that if the answer is YES, 
there is a proof of that which can be verified in polynomial time.

NP (stands for “nondeterministic polynomial”)

The set of all decision problems that have an algorithm that 
runs in time 𝑶 𝒏𝒌  for some constant 𝑘.

P (stands for “Polynomial”)

Problem B is NP-complete if B is in NP and 
for all problems A in NP, A reduces to B in polynomial time. 

NP-complete

Problem B is NP-hard if
for all problems A in NP, A reduces to B in polynomial time. 

NP-hard



Why is it called NP?
You’ve seen nondeterministic computation before.
Back in 311.

NFAs would “magically” decide among a set of valid transitions.
Always choosing one that would lead to an accept state (if such a 
transition exists).



An NFA and a DFA for the language 
“binary strings with a 1 in the 3rd position from the end.”

From Kevin & Paul’s 311 Lecture 23.



Nondeterminism
What would a nondeterministic computer look like?
It can run all the usual commands,
But it can also magically (i.e. nondeterministically) decide to set any bit 
of memory to 0 or 1.
Always choosing 0 or 1 to cause the computer to output YES, 
(if such a choice exists).



If we had a nondeterministic computer…
Can you think of a polynomial time algorithm on a nondeterministic 
computer to:
Solve 2-COLOR?

Solve 3-COLOR?



If we had a nondeterministic computer…
Can you think of a polynomial time algorithm on a nondeterministic 
computer to:
Solve 2-COLOR?
Just run our regular deterministic polynomial time algorithm
Or nondeterministically guess colors, output if they work.
Solve 3-COLOR?
nondeterministically guess colors, output if they work.



Analogue of NFA/DFA equivalence
You showed in 311 that the set of languages decided by NFAs and DFAs 
were the same.
I.e. NFAs didn’t let you solve more problems than DFAs.
But it did sometimes make the process a lot easier.
There are languages such that the best DFA is exponentially larger than 
the best NFA. (like the one from a few slides ago).

P vs. NP is an analogous question. Does non-determinism let us use 
exponentially fewer resources to solve some problems?



History, and Why P vs. NP?



NP-Completeness
If you find an efficient algorithm for an NP-complete problem, you have 
an algorithm for every problem in NP

SAT is NP-complete 
Cook-Levin Theorem (1971)



NP-Complete Problems
But Wait! There’s more!

A lot of problems people 
care about are NP-
complete

Karp’s Theorem (1972)



NP-Complete Problems
But Wait! There’s more!
 By 1979, at least 300 problems had been 
proven NP-complete.

Garey and Johnson put a list of all the NP-
complete problems they could find in this 
textbook.
Took them almost 100 pages to just list them 
all.
No one has made a comprehensive list since.



NP-Complete Problems
But Wait! There’s more!

In the last month, mathematicians and computer scientists have put 
papers on the arXiv claiming to show (at least) 10 more problems are 
NP-complete.

If you spend enough time trying to use computers to solve your 
problems, you will run into an NP-complete problem sooner or later.
What do you do?



Dealing with NP-Completeness
Option 1: Maybe it’s a special case we understand
Maybe you don’t need to solve the general problem, just a special case
-2-COLOR vs. 3-COLOR

Option 2:  Maybe it’s a special case we don’t understand (yet)
There are algorithms that are known to run quickly on “nice” instances. 
Maybe your problem has one of those.
One approach: Turn your problem into a SAT instance, find a solver and 
cross your fingers.



Dealing with NP-Completeness
Option 3: Approximation Algorithms
You might not be able to get an exact answer, but you might be able to 
get close.

Given a weighted graph, find a tour (a walk that visits every vertex 
and returns to its start) of minimum weight.

Optimization version of Traveling Salesperson

Algorithm:
Find a minimum spanning tree.
Have the tour follow the visitation order of a DFS of the spanning tree.
Theorem: This tour is at most twice as long as the best one.



Why should you care about P vs. NP
Most computer scientists are convinced that P≠NP.
Why should you care about this problem?

It’s your chance for:
$1,000,000. The Clay Mathematics Institute will give $1,000,000 to 
whoever solves P vs. NP (or any of the 5 remaining problems they listed)
To get a Turing Award



Why should you care about P vs. NP
Most computer scientists are convinced that P≠NP.
Why should you care about this problem?

It’s your chance for:
$1,000,000. The Clay Mathematics Institute will give $1,000,000 to 
whoever solves P vs. NP (or any of the 5 remaining problems they listed)
To get a Turing Award the Turing Award renamed after you. 



Why Should You Care if P=NP?
Suppose P=NP. 
Specifically that we found a genuinely in-practice efficient algorithm for 
an NP-complete problem. What would you do?
-$1,000,000 from the Clay Math Institute obviously, but what’s next?



Why Should You Care if P=NP?
We found a genuinely in-practice efficient algorithm for an NP-
complete problem. What would you do?
-Another $5,000,000 from the Clay Math Institute
-Put mathematicians out of work.
-Decrypt (essentially) all current internet communication. 
-A world where P=NP is a very very different place from the world we 
live in now.



Why Should You Care if P≠NP?
We already expect P≠NP. Why should you care when we finally prove it?
P≠NP says something fundamental about the universe.
For some questions there is not a clever way to find the right answer
-Even though you’ll know it when you see it.



Why Should You Care if P≠NP?
To prove P≠NP we need to better understand the differences between 
problems. 
-Why do some problems allow easy solutions and others don’t?
-What is the structure of these problems?
We don’t care about P vs NP just because it has a huge effect about 
what the world looks like.
We will learn a lot about computation along the way.


