
Lecture 1: Intro, Stacks &
Queues

CSE 332: Data Structures & Parallelism

Yafqa Khan

Summer 2025

1

Welcome!

We have 9 weeks to learn fundamental data structures and algorithms
for organizing and processing information

1. “Classic” data structures / algorithms and how to analyze rigorously
their efficiency and when to use them

2. Queues, dictionaries, graphs, sorting, etc.

3. Parallelism and concurrency (!)

2

Today

• Introductions

• Administrative Info

• What is this course about?

• Lecture 01
• ADTs, Data Structures (and Algorithm), and Implementation
• Review: Queues and stacks

3

CSE 332 23su Course Staff

Instructor:

Yafqa Khan

Teaching Assistants:

• Aaron Honjaya

• Hana Smahi

• Jacklyn Cui

• Samarth Venkatesh

4

Me (Yafqa Khan)

• BS/MS Graduate

• Too many quarters of TA’ing (14?)

• Previously: Amazon

• Hobbies: Reading, Anime/Manga, Finding Housing :_(

5

Today

• Introductions

• Administrative Info

• What is this course about?

• Lecture 01
• ADTs, Data Structures (and Algorithm), and Implementation
• Review: Queues and stacks

6

Course Information

• Instructor: Yafqa Khan, CSE206
• Office Hours: see course web page and by appointment (email me)
• yafqak@cs.washington.edu

• Course Web Page:
• cs.uw.edu/332

• Syllabus:
• On the website!

7

mailto:yafqak@cs.washington.edu

Communication (to you)

• Course email lists:
• cse332a_su25@uw.edu
• UW Email!

• Ed Discussion Board (to you)
• To you: Ed Announcement Emails

8

Communication (to us)

• Course staff lists:
• cse332-staff@cs.washington.edu
• CS Email! Yes, very confusing, weird UW + Allen School infrastructure

• Ed Discussion Board (to us)
• To us: Ask questions!

• Anonymous Feedback Form (feedback.cs.washington.edu)
• Nobody sees your name (including me)
• CANNOT REPLY
• Good + Bad Feedback, if you don't say anything we won't know :(

9

Course Meetings

• Lecture
• Take notes, materials posted (sometimes afterwards)

• Ask questions, focus on key ideas (rarely coding details)

• Attend synchronously as much as possible and interact with peers!

• Section
• Practice problems!

• Answer Java/project/homework questions, etc.

• Occasionally may introduce new material

• An important part of the course (not optional)

• Office hours
• Use them: please visit us!

10

Course Material

• Lecture and section materials will be posted
• They are visual aids, so not always a complete description!
• If you must miss, find out what you missed

• Textbook: Weiss 3rd Edition in Java
• Good read, but only responsible for lecture/section/hw topics
• 3rd edition improves on 2nd, but 2nd is fine

• Parallelism / concurrency topics in separate free resource designed
for 332

• https://homes.cs.washington.edu/~djg/teachingMaterials/spac/sophomoricP
arallelismAndConcurrency.pdf

11

https://homes.cs.washington.edu/~djg/teachingMaterials/spac/sophomoricParallelismAndConcurrency.pdf
https://homes.cs.washington.edu/~djg/teachingMaterials/spac/sophomoricParallelismAndConcurrency.pdf

Course Work

• 13 individual homework exercises (60%)
• 5% each, lowest scoring one dropped
• 2 late days each EXCEPT exercise 12
• 6 late days TOTAL

• 2 in-person exams

• 20% each, both non-cumulative
• Check website + syllabus for info
• Email me ASAP if cannot make it

12

Homework :(

Sorry, the class is really condensed

1. EX 0 out today (spec on website)

• due next monday

2. Check you have access to Ed
• Email me if there are problems
• https://courses.cs.washington.edu/courses/cse332/25su/calendar/lecturelist

.html

13

https://courses.cs.washington.edu/courses/cse332/25su/calendar/lecturelist.html
https://courses.cs.washington.edu/courses/cse332/25su/calendar/lecturelist.html

Homework :(

4. Reading (optional)
• Weiss textbook - free rent at Ode!
• For this week:

• (Today) Weiss 3.1-3.7 – Lists, Stacks & Queues (Topic for Project #1)

• (Friday) Weiss 2.1-2.4 – Algorithm Analysis

 Weiss 1.1-1.6 – Mathematics and Java
 (NOT covered in lecture, will use some of these baseline facts)

14

Any Questions?

15

Today

• Introductions

• Administrative Info

• What is this course about?

• Lecture 01
• ADTs, Data Structures (and Algorithm), and Implementation
• Review: Queues and stacks

16

Data Structures & Parallelism

• About 70% of the course is the “data structures & algorithms course”
• What and how of data structures & algorithms
• Pick the correct data structures & algorithms (analyze & tradeoffs)
• Implement them

• + a serious first treatment of programming with multiple threads
• For parallelism: Use multiple processors to finish sooner
• For concurrency: Correct access to shared resources

Really should be called
Data Structures & Algorithms and Parallelism & Concurrency 🙃

17

One view on this course

• This is the class where you begin to think like a computer scientist
• You stop thinking in Java code
• You start thinking that this is a hashtable problem, a stack problem, etc.
• Feel more comfortable not having one best, correct answer

• Make good design choices

• Justify and communicate your design choices

18

Today

• Introductions

• Administrative Info

• What is this course about?

• Lecture 01
• ADTs, Data Structures (and Algorithm), and Implementation
• Review: Queues and stacks

19

Data Structures?

Clever ways to organize information in order to enable efficient
computation over that information

20

Data Structures (Examples)

21

Trade-Offs

• A data structure strives to provide many useful, efficient operations

• But trade-offs!
• Time vs. Space
• One operation more efficient if another less efficient
• Generality vs. Simplicity vs. Performance

• That is why there are many data structures

22

Terminologies

• Abstract Data Type (ADT)
• Mathematical description of a "thing"

with set of operations on that "thing"

• Data Structures
• A specific organization of data and

family of algorithms for implementing
an ADT

• Implementation of a data structure
• The actual code implementation in a

specific language

• Algorithm
• A high level,

language-independent
description of a
step-by-step process

23

Stacks and Queue ADT

24

Stack ADT Queue ADT

State:
• Set of elements

State:
• Set of elements

Operations:
• push(element)
• pop() – returns the most

recent element that was
added to the stack

• ... etc.

Operations:
• enqueue(element)
• dequeue() – deletes and

returns the element that has
been in the queue the
longest

• ... etc.

Terminology Example: Stack

• The Stack ADT supports operations:
• push: adds an item

• pop: raises an error if isEmpty, else returns most-recently pushed item not yet returned by a
pop

• isEmpty: initially true, later true if there have been same number of pops as pushes

• etc.

• A Stack data structure could use a linked-list or an array or something else, and
associated algorithms for the operations

• One implementation is in the library java.util.Stack

25

Why useful

The Stack ADT is a useful abstraction because:

• It arises all the time in programming (see Weiss for more)
– Recursive function calls

– Balancing symbols (parentheses)

– Evaluating postfix notation: 3 4 + 5 *

– Clever: Infix ((3+4) * 5) to postfix conversion (see Weiss)

• We can code up a reusable library

• We can communicate in high-level terms
– “Use a stack and push numbers, popping for operators…”

– Rather than, “create a linked list and add a node when…”

26

Any Questions?

27

Terminology Example: Queue

• The Queue ADT supports operations:
– enqueue: adds an item at the end

– dequeue: raises an error if isEmpty, else returns item at the start

– isEmpty: initially true, later true if there have been same number of enqueue as dequeues

– etc.

• A Queue data structure could use a linked-list or an array or something else, and
associated algorithms for the operations

• One implementation is in the library java.util.Queue

28

Circular Array Queue Data Structure

b c d e f
Q: 0 size - 1

front back

// Basic idea only!
enqueue(x) {
 Q[back] = x;
 back = (back + 1) % size
}

// Basic idea only!
dequeue() {
 x = Q[front];
 front = (front + 1) % size;
 return x;
}

• What if queue is empty?
– Enqueue?
– Dequeue?

• What if array is full?
• How to test for empty?
• What is the complexity of

the operations?

29

Linked List Queue Data Structure
b c d e f

front back

// Basic idea only!
enqueue(x) {
 back.next = new Node(x);
 back = back.next;
}

// Basic idea only!
dequeue() {
 x = front.item;
 front = front.next;
 return x;
}

• What if queue is empty?
– Enqueue?
– Dequeue?

• Can list be full?
• How to test for empty?
• What is the complexity of

the operations?

30

Any Questions?

31

Circular Array vs. Linked List

Array: List:

• May waste unneeded space or run out of space
• Space per element excellent
• Operations very simple / fast

• Always just enough space

• But more space per element

• Operations very simple / fast

Operations not in Queue ADT, but also: Operations not in Queue ADT, but also:

• Constant-time “access to kth element”
• For operation “insertAtPosition”, must shift all later

elements

• No constant-time “access to kth element”

• For operation “insertAtPosition” must traverse all
earlier elements

32

Homework Today :(

Sorry, the class is really condensed

1. EX 0 out today (spec on website)

• due next monday

2. Check you have access to Ed
• Email me if there are problems
• https://courses.cs.washington.edu/courses/cse332/25su/calendar/lecturelist

.html

3. Reading (optional)

33

https://courses.cs.washington.edu/courses/cse332/25su/calendar/lecturelist.html
https://courses.cs.washington.edu/courses/cse332/25su/calendar/lecturelist.html

Timeline

• ADTs, Data Structures (and Algorithm), and Implementation
• Review: Queues and stacks

• What do we care about?

• Analyzing Code
• Counting code constructs
• Best Case vs. Worst Case

• Asymptotic Analysis
• Big-Oh Definition

34

