Lecture 19: Analysis of Fork-
Join Parallel Programs

CSE 332: Data Structures & Parallelism
Yafga Khan
Summer 2025

Announcements

* EXO8 due today

 EX09 due Monday

 EX10 released today

* Exam 2 information posted here:

Note: it will be hard to accommodate makeups; only four days to grade

If you can’t make proposed makeup dates (e.g., sickness/emergency), some
options:

Option 1: Exam 1 is worth 40% instead of 20% of overall grade

Option 2: Take the final exam in the next CSE 332 offering

Today

 Java Thread Library
e Java ForkJoin Library

e Simple Parallel Patterns: Map + Reduce

* Analyzing Parallel Algorithms

* Work and Span
e Amdahl's Law

Today

 Java Thread Library
e Java ForkJoin Library

e Simple Parallel Patterns: Map + Reduce

* Analyzing Parallel Algorithms

* Work and Span
e Amdahl's Law

Today

 Java Thread Library
e Java ForkJoin Library

e Simple Parallel Patterns: Map + Reduce

* Analyzing Parallel Algorithms
* Work and Span
 Amdahl's Law

Today

 Java Thread Library
e Java ForkJoin Library

e Simple Parallel Patterns: Map + Reduce

* Analyzing Parallel Algorithms
* Work and Span
 Amdahl's Law

Analyzing Algorithms: Work and Span

Let T, be the running time if there are P processors available
Two key measures of run-time: D

How long it would take Lprocessor =T, \

Just “sequentialize” the recursive forking 6
Cumulative work that all processors must complete

: How long it would take infinity processors =
The hypothetical ideal for parallelization
This is the longest “dependence chain” in the computation

Example: Ogl%g n) for summing an array
* Notice in this example having > n/2 processors is no additional help
Also called “critical path length” or “computational depth”

The DAG (Directed Acyclic Graph)

* A program execution using fork and join can be seen as a DAG

« [ADAG s a graph that is directed (edges have direction (arrows)), and those arrows do not create acycle (ability to
trace a path that starts and ends at the same node).]

* Nodes: Pieces of work [@{ﬁ ; @L/Q_KJ
* Edges: Source must finish before destination starts r 7 L Z(~ o /‘4/}7“44@,(}

e A fork “ends a node” and makes
two outgoing edges

* New thread

e Continuation of current thread

e Ajoin “endsanode” and makes a

nommg edges

e Node just ended

e Last node of thread joined on

07/27/2022

Our simple examples, in more detail

Our fork and join often look like this:

divide

base cases

combine
results

In this context, the span (T,) is: 7
*The longest dependence-chain; longest ‘branch’ in parallel ‘tree’
*Example: O(log n) for summing an array; we halve the data down to our cut-off, then add
back together; O(log n) steps, O(1) time for each
*Also called “critical path length” or “computational depth”

07/27/2022

Connecting to performance

Recall: T, = running time if there are P processors available

Work = T; = sum of run-time of all nodes in the DAG

~+ That lonely processor does everything
* Any topological sort is a legal execution
e O(n) for simple maps and reductions

Span =T, =sum of run-time of all nodes on the most-expensive path in
the DAG E——

* Note: costs are on the nodes not the edges

* Our infinite army can do everything that is ready to be done, but still has to

wait for earlier results
or simple maps and reductions

Definitions

—

= O

A couple more terms:

T ﬂ .
onP processors@ % —

* If speed-up is P as we vary P, we call it ¢

|/
i

—

* Perfect linear speed-up means doubling P halves running time

e Usually our goal; hard to get in practice =

=S

P3 is the maximum possible speed-up@/ﬁ! ;L

* At some point, adding processors won’t help
* What that point is depends on the span

Parallel algorithms is about decreasing span without
increasing work too much

Optimal Tp: Thanks ForkJoin library!
 So we know@andut we wan(g.g., P=4)

e lgnoring memory-hierarchy issues cachln can’t beat ~
gNno Y- Y (7 g)@ %ef 7%@ S/Qf/e%

* Soan asymptot/cally optimal executi ould be: __ - C (7’ 3 + T >
T, = O((T,/P)+T,) _L\P - 5‘

* First term dominates for small P second for large P

* The ForklJoin Framework gives an expected-time guarantee of asymptotically
optimal_— 7

* Guarantee requires a few assumptions about your code...

Division of responsibility Q

* Our job as ForkJoin Framework users: (D O
(D Pick a good algorithm, write a program
@When run, program creates a DAG of things to do O O

~@/\/Iake all the nodes a small-ish and approximately equal amount of work

To ¢ O(T\/P+ Tos)

 The framework-writer’s job:

* Assign work to available processors to avoid

e Let framework-userignore all issues
* Keep constant factors low

* Give the assumingframework-user did his/her job
T = 0T /P) TW

Examples

j/ To= O((T,/P)+T,) |

In the algorithms seen so far (e.g., sum an array):
t !w= O(logn) |

* So expect (ignoring overheads): T, = O(n/P + 1og n)

Suppose instead:
* T,=0(n?

* T=0(n)

* So expect (ignoring overheads): Tp

O(n?/P + n)

And now for the bad news...

So far: talked about a parallel program in terms of work and span

In practice, it’s common that your program has:

a) parts that parallelize well:
* Such as maps/reduces over arrays and trees

) ...and parts that don’t parallelize at all:
* Such as reading a or just doing computations where each
step needs the results of previousstep
tan turn out to be a big bottlenec)k_@ch\

nese~u
brings us

07/27/2022

Amdahl’s Law (mostly bad news)

Let S be the portion of the execution that can’t be parallelized

Then: fi)=1.0+10 -9

Suppose we get perfect linear speedup on the parallel portion

+ TQ/T\ _ O F B

Then: Tp =T, S5

So the theoretical overall speedup with P processors is (Amdahl’s Law):
Ty _ 1
Tp S+(1-S)/P

And the parallelism (infinite processors) is:
Iy

T =@ 2S TS

% L& g}/@(é@(AV Q/IZ wost

07/27/2022

ry(1-5)

Amdahl’s Law Ip=T15+—75

Suppose our program takes 100 seconds.
And S is 1/3 (i.e. 33 seconds).

What is the running timewith

3 processors

6 processors

22 processors

6/ processors

1,000,000 processors (approximately).

Amdahl’s Law

Suppose our program takes seconds.
And S is 1/3 (i.e. 33 seconds).

What is the running time with
3 processors:@+§_7@z 55 second
6 processors: 33 + 67@% 44 seconds

22 processors: 33 +67/22 = 36 seconds
V' 67 processors@ + 67/67 = 34 seconds
1,000,000 processors (approximately). 7{(3@ seconcﬂ

Amdahl’s Law

* This is BAD NEWS

* If 1/3 of our program can’t be parallelized, we can’t get a speedup
better than 3.

* No matter how many processors we throw at our problem.

* And while the first few processors make a huge difference, the benefit
diminishes quickly. |

Any Questions?

Any Questions?

‘“ O@ OU T ‘PWO?YW S (/,Wsmrwaé///\jéﬂb(ﬁ

dE et

o What s the. maxi nup QJ@%%MPKZ
TVIN T\ 7 T\ T \ T
§sitas To s x U=9/F
\ i
5 min <V5 ;ég/ﬂg

/(ﬂw SEA%h

e M%/ ATERsam-an

>

