
Lecture 19: Analysis of Fork-
Join Parallel Programs

CSE 332: Data Structures & Parallelism

Yafqa Khan

Summer 2025

1

Announcements

• EX08 due today

• EX09 due Monday

• EX10 released today

• Exam 2 information posted here:
• https://courses.cs.washington.edu/courses/cse332/25su/exams/final.html

• Note: it will be hard to accommodate makeups; only four days to grade

• If you can’t make proposed makeup dates (e.g., sickness/emergency), some
options:

• Option 1: Exam 1 is worth 40% instead of 20% of overall grade

• Option 2: Take the final exam in the next CSE 332 offering

2

https://courses.cs.washington.edu/courses/cse332/25su/exams/final.html
https://courses.cs.washington.edu/courses/cse332/25su/exams/final.html

Today

• Java Thread Library

• Java ForkJoin Library

• Simple Parallel Patterns: Map + Reduce

• Analyzing Parallel Algorithms
• Work and Span

• Amdahl's Law

3

Today

• Java Thread Library

• Java ForkJoin Library

• Simple Parallel Patterns: Map + Reduce

• Analyzing Parallel Algorithms
• Work and Span

• Amdahl's Law

4

Today

• Java Thread Library

• Java ForkJoin Library

• Simple Parallel Patterns: Map + Reduce

• Analyzing Parallel Algorithms
• Work and Span

• Amdahl's Law

5

Today

• Java Thread Library

• Java ForkJoin Library

• Simple Parallel Patterns: Map + Reduce

• Analyzing Parallel Algorithms
• Work and Span

• Amdahl's Law

6

Analyzing Algorithms: Work and Span

Let TP be the running time if there are P processors available

Two key measures of run-time:

• Work: How long it would take 1 processor = T1
• Just “sequentialize” the recursive forking
• Cumulative work that all processors must complete

• Span: How long it would take infinity processors = T
• The hypothetical ideal for parallelization
• This is the longest “dependence chain” in the computation
• Example: O(log n) for summing an array

• Notice in this example having > n/2 processors is no additional help
• Also called “critical path length” or “computational depth”

07/27/2022

The DAG (Directed Acyclic Graph)

• A program execution using fork and join can be seen as a DAG
• [A DAG is a graph that is directed (edges have direction (arrows)), and those arrows do not create a cycle (ability to

trace a path that starts and ends at the same node).]

• Nodes: Pieces of work

• Edges: Source must finish before destination starts

• A fork “ends a node” and makes
two outgoing edges

• New thread

• Continuation of current thread

• A join “ends a node” and makes a
node with two incoming edges

• Node just ended

• Last node of thread joined on

07/27/2022

Our simple examples, in more detail
Our fork and join often look like this:

base cases

divide

combine
results

In this context, the span (T) is:
•The longest dependence-chain; longest ‘branch’ in parallel ‘tree’
•Example: O(log n) for summing an array; we halve the data down to our cut-off, then add
back together; O(log n) steps, O(1) time for each
•Also called “critical path length” or “computational depth”

07/27/2022

Connecting to performance
Recall: TP = running time if there are P processors available

Work = T1 = sum of run-time of all nodes in the DAG
• That lonely processor does everything
• Any topological sort is a legal execution
• O(n) for simple maps and reductions

Span = T = sum of run-time of all nodes on the most-expensive path in
the DAG

• Note: costs are on the nodes not the edges
• Our infinite army can do everything that is ready to be done, but still has to

wait for earlier results
• O(log n) for simple maps and reductions

07/27/2022

Definitions
A couple more terms:

• Speed-up on P processors: T1 / TP

• If speed-up is P as we vary P, we call it perfect linear speed-up
• Perfect linear speed-up means doubling P halves running time

• Usually our goal; hard to get in practice

• Parallelism is the maximum possible speed-up: T1 / T 

• At some point, adding processors won’t help

• What that point is depends on the span

Parallel algorithms is about decreasing span without

increasing work too much
07/27/2022

Optimal TP: Thanks ForkJoin library!
• So we know T1 and T  but we want TP (e.g., P=4)

• Ignoring memory-hierarchy issues (caching), TP can’t beat
• T1 / P why not?

• T  why not?

• So an asymptotically optimal execution would be:

TP = O((T1 / P) + T )

• First term dominates for small P, second for large P

• The ForkJoin Framework gives an expected-time guarantee of asymptotically
optimal!
• Guarantee requires a few assumptions about your code…

07/27/2022

Division of responsibility

• Our job as ForkJoin Framework users:
• Pick a good algorithm, write a program

• When run, program creates a DAG of things to do

• Make all the nodes a small-ish and approximately equal amount of work

• The framework-writer’s job:
• Assign work to available processors to avoid idling

• Let framework-user ignore all scheduling issues

• Keep constant factors low

• Give the expected-time optimal guarantee assuming framework-user did his/her job

TP = O((T1 / P) + T )

07/27/2022

Examples

TP = O((T1 / P) + T )

In the algorithms seen so far (e.g., sum an array):
• T1 = O(n)
• T = O(log n)

• So expect (ignoring overheads): TP = O(n/P + log n)

Suppose instead:
• T1 = O(n2)
• T = O(n)

• So expect (ignoring overheads): TP = O(n2/P + n)

07/27/2022

And now for the bad news…

So far: talked about a parallel program in terms of work and span

In practice, it’s common that your program has:

a) parts that parallelize well:
• Such as maps/reduces over arrays and trees

b) …and parts that don’t parallelize at all:
• Such as reading a linked list, getting input, or just doing computations where each

step needs the results of previous step

These unparallelized parts can turn out to be a big bottleneck, which
brings us to Amdahl’s Law …

07/27/2022

Amdahl’s Law (mostly bad news)
Let the work (time to run on 1 processor) be 1 unit time

Let S be the portion of the execution that can’t be parallelized

Then: 𝑇1 = 𝑇1 𝑆 + 𝑇1(1 − 𝑆)

Suppose we get perfect linear speedup on the parallel portion

Then: 𝑇𝑃 = 𝑇1 𝑆 +
𝑇1(1−𝑆)

𝑃

So the theoretical overall speedup with P processors is (Amdahl’s Law):

𝑻𝟏

𝑻𝑷
=

𝟏

𝑺+(𝟏−𝑺)/𝑷

And the parallelism (infinite processors) is:

𝑇1

𝑇∞
=

1

𝑆

07/27/2022

Amdahl’s Law

Suppose our program takes 100 seconds.

And 𝑆 is 1/3 (i.e. 33 seconds).

What is the running time with

3 processors

6 processors

22 processors

67 processors

1,000,000 processors (approximately).

𝑇𝑃 = 𝑇1 𝑆 +
𝑇1(1 − 𝑆)

𝑃

07/27/2022

Amdahl’s Law

Suppose our program takes 100 seconds.

And 𝑆 is 1/3 (i.e. 33 seconds).

What is the running time with

3 processors: 33 + 67/3 ≈ 55 seconds

6 processors: 33 + 67/6 ≈ 44 seconds

22 processors: 33 + 67/22 ≈ 36 seconds

67 processors 33 + 67/67 ≈ 34 seconds

1,000,000 processors (approximately). ≈ 33 seconds

𝑇𝑃 = 𝑇1 𝑆 +
𝑇1(1 − 𝑆)

𝑃

07/27/2022

Amdahl’s Law

• This is BAD NEWS

• If 1/3 of our program can’t be parallelized, we can’t get a speedup
better than 3.

• No matter how many processors we throw at our problem.

• And while the first few processors make a huge difference, the benefit
diminishes quickly.

07/27/2022

Any Questions?

20

	Slide 1: Lecture 19: Analysis of Fork-Join Parallel Programs
	Slide 2: Announcements
	Slide 3: Today
	Slide 4: Today
	Slide 5: Today
	Slide 6: Today
	Slide 7: Analyzing Algorithms: Work and Span
	Slide 8: The DAG (Directed Acyclic Graph)
	Slide 9: Our simple examples, in more detail
	Slide 10: Connecting to performance
	Slide 11: Definitions
	Slide 12: Optimal TP: Thanks ForkJoin library!
	Slide 13: Division of responsibility
	Slide 14: Examples
	Slide 15: And now for the bad news…
	Slide 16: Amdahl’s Law (mostly bad news)
	Slide 17: Amdahl’s Law
	Slide 18: Amdahl’s Law
	Slide 19: Amdahl’s Law
	Slide 20: Any Questions?

