Lecture 18: Introduction to
Multithreading & Fork-Join
Parallelism

CSE 332: Data Structures & Parallelism
Yafga Khan
Summer 2025

Changing a major assumption

Assumption: One thing happened at a time

Called sequential programming — everything part of one sequence

Removing this assumption creates major challenges & opportunities

* Programming: Divide work among threads of execution and
coordinate (synchronize) among them

* Algorithms: How can parallel activity provide speed-up

e (more throughput: work done per unittime)
e Data structures: May need to squ

e (multiple threads operating on data at the same time)

A simplified view of history

* Writing correct and efficient multithreaded code is often much more
difficult than for single-threaded (i.e., sequential) code
e Especially in common languages like Java and C
* So typically stay sequential if possible

* From roughly 1980-2005, desktop computers got exponentially faster
at running sequential programs

* About twice as fast every couple years

* But nobody knows how to continue this

* Increasing clock rate generates too much heat
\A

* Relative cost of memory access is too high

* But we can keep making “wires exponentially smaller” (Moore’s “Law”), so

put multiple pracessors on the same chip (“multicore™)— T

What to do with multiple processors?

20 10s

* Next computer you buy will likely hav\e@ocessors
* Wait a few years and it will be 8, 16, 32, ...
* The chip companies have decided to do this (not a “law”)

hat ¢
 Run multiple totally different programs at the same time
at? Yes, but with time-slicing

 Do.multiple thing®at Wprogram\

* Our focus — more difficult
* Requires rethinking everything from asmetotic complexity to how to implement data-

structure operati — T =

D 2)

Parallelism vs Concurrency

* No agreed definition :(

Our definition:

Use extra resources to Correctly and efficiently manage
£exira reso

solve a problem faster acces ared resources

resource

There is %m?COﬁHeCtLQﬂ\
e Common to use threads for both
e |f parallel computations need access to shared resources, then the concurrency needs

to be managed

An analogy

RN
* Intro CS idea: A program is Iikeﬂ@r a cook

* One cook who does one thing at a time! (Sequential)

 Parallelism: (Let’s get the job done faster!) a1 P e
* Have lots of potatoes to slice?
* Hire helpers, hand out potatoes and knives
e But too many chefs and you spend all your time coordinating

e Concurrency: (We need to manage a sh rce)

* Lots of cooks making different things, but anly 1 fridge
* Want to allow access to this fridge without fighti

Parallelis

* Parallelism: Use extra computational resources to solve a problem
faster (increasing throughput via simultaneous executign

2)
e Pseudocode (not Java yet) for array sum: é"

* No such ‘FORALL’ construct, but we’ll see something similar
R
* Bad style, but with 4 processors may get roughly 4x speedup

Wint Sum

) //parallel iterations
arr,i*len/4, (i+l) *len/4) ;

res[O]+res[1]+reS[2]+reS[3];

int sumRange(int[] arr, int lo, int hi) {
result = 0;
(7=1lo; J < hi; J++)
result += arr([j];
result;

Concurrency Example

* Concurrency: Correctly and efficiently manage access to shared resources (from
multiple possibly-simultaneous clients)
* e.g., Multiple threads accessing a hash-table, but not getting in each others’ ways

* Pseudocode (notJava) for a shared chaining hashtable
* Essential correctness issue is preventing bad interleavings

» Essential performance issue not preventing good concurrency

* One ‘solution’ to preventing bad inter-leavings is to do it all sequentially
Hashtable<K, V> {

~

v01d insert (K key, V value) {
/////////:jj> lnt bucket =
V lookup (K key) {

(similar to insert, but can allow concurrent
lookups to same bucket)

Ao de

Shared memory with Threads

The model we will assume is shared memory with explicit threads

* Old story: A running program has
* One program counter (current statement executing)

* One call stack{with each stack frame holding local variables)

* Objects in the heap created by memory allocation (i.e., new)
* (nothing to do with data structure called a heap)

* Staticfields
* New story:
* Ase hreads, each with its own program counter & call stack
P YeldTT R o et

* No access to another thread’s local variables
* Threads can (implicitly) share static fields / objects

* To communicate, write values to some shared location that another thread
reads from

Old Story: One call stack, one pc

Heap for all objects

« (Call stack with local variables and static fields

* pc determines current statement
* local variables are numbers/null
or heap references

10

New Story: Shared memory with Threads

Heap for all objects
and static fields, shared

Threads, each with own unshared by all threads

call stack and “program counter”

11

Other models

We will focus on shared memory, but you should know several other
models exist and have their own advantages

* Message-passing: Each thread has its own collection of objects.
_’—.

Communication is via explicitly sending/receiving messages
* Cooks working in separate kitchens, mail around ingredients

 Dataflow: Programmers write programs in terms of a DAG.

* A node executes after all of its predecessors in the graph
e Cooks wait to be handed results of previous steps

e Data parallelism: Have primitives for things like “apply function to
every element of an array in lel” |

Our Needs

* To write a shared-memory parallel program, need new primitives
from a programming language or library

* Ways to create and run multiple things at once
* Let’s call these things threads
/\

* Ways for threads to share memory
* Often just have threads with references-to the same objects _

 Ways for threads to coordinate (a.k.a. synchronize)

* For now, a way for one thread to wait for another to finish
e Other primitives when we study concurrency

Java basics

* First learn some basics built into Java via java.lang.Thread
* Then a better library for parallel programmin

* To get a new thread running:
* Define a subeglass C of java.lang.Thread,(overriding run

* Create anobject of class C
* Call that object’s start method
* start sets off a new thread, using fun as its “main”

* What if we instead called the%@)methgd of C?
* This would just be a normal method call, in the current thread

* Let’s see how to share memory and coordinate via an example...

Parallelism ldea

« Example: Sum elements of a large array
* Idea: Have 4 threads simultaneously sum 1/4 of the array
— Warning: This is an inferior first approach

T s
ans

— Create 4 thread objects, each given a portion of the work

— Call start () on each thread obj actually run it in parallel

— Wait for threads to finish using joi

— Add together their 4 answers for the final result

15

First attempt, part 1

java.lang.Thread {

int lo; // fields, assigned in the constructor
int hi; // so threads know what to do.

int[] arr;

int ans = 0; // result

SumThread (int[] a, int 1, 1int h) {
lo=1; hi=h; arr;a?=:z” =

}

void run() { //override must have this type
(int i=lo; i < hi; i++)
ans += arr[i];
} — —

16

First attempt, continued (wrong)

SumThread java.lang.Thread {
int lo, int hi, int[] arr; // fields to know what to do
int ans = 0; // result
SumThread (int[] a, int 1, int h) { .. }
void run(){ .. } // override
}
int sum(int[] arr){ // can be a static method
int len = arr.length;
int ans = 0;
SumThread[] ts = SumThread[4];
(int IT=07 4; i++) // do parallel computations
ts[i] = SumThread (arr,i*len/4, (i+1) *len/4) ;

or(int i=0; 1 < 4; i++) // combine results
208 S= ES[1] Emss

ans;
o Grer
}

17

Second attempt (still wrong)

SumThread java.lang.Thread {
int lo, int hi, int[] arr; // fields to know what to do
int ans = 0; // result
SumThread (int[] a, int 1, int h) { .. }
void run(){ .. } // override
}
int sum(int[] arr){// can be a static method
int len = arr.length;
int ans = 0;
SumThread[] ts = SumThread[4];
(int 1i=0; 1 < 4; i++){// do parallel computations
ts[i] = SumThread (arr,i*len/4, (i+1) *len/4) ;

ts[i].start(); // start not run

}

(int 1=0; 1 < 4; i++) // combine results

ans += ts[i1].ans;
ans;

18

Third attempt (correct in spirit)

SumThread java.lang.Thread {
int lo, int hi, int[] arr; // fields to know what to do
int ans = 0; // result
SumThread (int[] a, int 1, int h) { .. }
void run(){ .. } // override
}
int sum(int[] arr){// can be a static method
int len = arr.length;
int ans = 0;
SumThread[] ts = SumThread[4];
(int 1=0; i < (4; i++){// do parallel computations
ts[i] = SumThread (arr,i*len/4, (i+1) *len/4) ;

ts[i].start () ;

}
(int 1i=0; 1 < 4; i++) { // combine results

jEL_J—;Qéﬂi___// wait for helper to finish!

ans += ts]| .ans;
} x

ansy

19

A better approach

Several reasons why this is a poor parallel algorithm

1. Want code to be reusable and efficient across platforms

* “Forward-portable” as core count grows

* So at the very least, parameterize by the number of threads

int sum(int[] arr, int mumTs)

]
int ans = 0;
SumThread[] ts = SumThread [numTs] ;
(int 1=0; i < numTs; i++) {
ts[i] = SumThread (arr, (i*arr.length) /numTs,

((i+1) *arr.length) /numTs) ;

ts[i] .start () ;

}
(int 1=0; 1 < numTs; 1++) {
ts[i].join(); —
ans += ts[i].ans;

}

ansy

A better approach

2. Want to use (only) processors “available to you now”

* Notused by other programs or threads in your program

Maybe calleris also using parallelism
* Available cores can change even while your threads run

 If you have 3 processors available and using 3 threads would take time X,
then creating 4 threads would take time 1. 5X

e Example: 12 units of work, 3 processors
e Work divided into 3 parts will take 4 units of time
. Work divided into 4 parts will take 3*2 units of time

// numThreads == numProcessors 1is bad
// 1f some are needed for other things
int sum(int[] arr, int numTs) {

}

A better approach ! @, @,

3. Though unlikely for sum, in general subproblems may take
significantly different amounts of time™ { {7

Example: Apply method £ to every array element, but maybe £ is
much slower for some data items
Example: Is a large integer prime?

If we create 4 threads and all the slow data is processed by 1 of
them, we won’t get nearly a 4x speedup
Example of a

/

]

g

A better approach

The counterintuitive (?) solution to all these prob s to cut up our problem into many
pieces, far more than the number of ssors
/4 ?% L)

— But this will require changing our algorithm
..... Java’s threads.

A YONANL Y SO\ TONALT
C S

S~ - A % ——

1. Fo ; ver many processors exist, they will be kept busy w/ small
chunks

2. Processors available: Hand out "work chunks” as you go

3. Load imbalance: Variation probably small if pieces of work are small

23

Naive algorithm is poor

Suppose we create 1 thread to process every 1000 elements

int sum(int|[] arr) {

NN
int numThreads = arr.length / 1000;
SumThread[] ts = SumThread [numThreads] ;

Then the “combining of results” part of the code will have arr.length / 1000 additions
* Linear in size of array (with constant factor 1/1000)
* Previous we had only 4 pieces (6(1) to combine)

e |nthe extreme, suppose we create one thread per element — If we use a for loop to combine the
results, we have N iterations

e |n either case we get a ©(N) algorithm with the combining of results as the bottleneck....

A better idea: Divide and Conquer!

1) Divide problem into pieces recursively:
— Start with full problem at root
— Halve and make new thread until size is at some cutoff
2) Combine answers in pairs as we return from recursion (see diagram)

Th|s will start small, and ‘grow’ threads to fit the problem

This is straightforward to implement using divide-and-conquer
 Parallelism for the recursive calls

25

Remember Mergesort?

Code looks something like this

TN

SumThread java.lang.Thread {
int Io; Imt hi; int[] arr; // fields to know what to do
int ans = 0; // result

SumThread(int[] a, int 1, int h)y { .. }

void run(){ // override
Q(; lo <= SEQUENTIAL CUTOF¥}
Tnt—T—to;— T < hi; 1++)
l ans += arr|[1i];

left.start
right.start (

right.join () ;
ans = left.ans + right.ans;
}

}

} L

(OO

SumThread left = SumThread (arr, lo, (hi+lo)/2) ;
SumThread right= SumThread (arr,

(hi+lo)/2,hi);

I‘ff‘j@ln()‘—77 don’t move this up a line - why?

J&

int sum(int[] arr){ // just make one thread!

ad T = SsumThread (arr,0,arr.length) ;
é.ans;

}

4
v

27

A

v

Optimizatio

// wasteful: don’t // better: do!!
SumThread left .
SumThread right

left.start () ;

SumThread left
SumThread right

left.start () ; Note: run isa

right.start() ;

left.join() ;
right.join() ;

91' ight .run{)y normal function call!

execution won’t

continue until we
are done with run

—E?}eft.join(); (D

/ no right.join needed —

ans=left.ans+right.ans; ans=left.ans+right.ans;

If a language had built-in support for fork-join parallelism, |
would expect this hand-optimization to be unnecessary

But the library we are using expects you to do it yourself
— And the difference is surprisingly substantial
Again, no difference in theory

order of last 4 lines
Is critical — why?

=%

O

S

.

v

%
V7
O

28

O

e —

Creating Fewer Threads

2 new threads at each step

(and only leaf threads @/+ \O

do much work)
ota O @/ \O
-|1-5tI!1reads &()\@/ E/J'\@ @ @ 14 +\ 15
AN A NN /N
o i i iy
(O T T T

1 new thread

1
at each step @/”f \@

-SI—Ottf?:ezads 3/ .2) / \ '
5 43 62 7t \ ./ U
Va ' N AN AN A NN

e i oy i e iy
ANNNANRRNNNRRANRRRRRNRRRRRNNR NN RN AN RN NN RN RN NN .

e tue ﬁT f rome wor &
That library, finally [or /%u%&//m /

* Even with all this care, Java’s threads are too “heavyweight”

* Constant factors, especially space overhead
e Creating 20,000 Java threads just a bad idea :(

* The ForkJoin Framework is designed to meet the needs of divide-and-
conquer fork-join parallelism —
* In the Java 8 standard libraries
* Section will focus on pragmatics/logistics

e Similar libraries available for other languages

e C/C++: Cilk (inventors), Intel’s Thread Building Blocks
e C#: Task Parallel Library

e Library’s i lon is a inati d topic

Different terms, same basic idea

To use the ForkJoin Framework:

* A little standard set-up code (e.g., create a ForkJoinPool)

Java Threads: ForkJoin Framework:
Don’t subclass Thread LDO subclass RecursiveTask<V>
Don't overrlde& Do override compute
¢ 4 Do retu rr@?m—;)mpute
Do call fork
Do ca ;%Q (which returns answer)
Don’t call run to hand-optimize Do call compute to hand-optimize
D/on’t have a topmost call to run Do create a pool and call invoke

_Q

Fork-Join Framework Version:,/~

SumTask RecursiveTask<Integer> {
int lo; int hi; int[] arr; // fields to know what to d
SumTask (int[] a, int 1, int h) { .. }
Integer compute () {// return answer
(hi - lo <= SEQUENTIAL CUTQEF) {
int ans = 0; // local var, not a field
(int i=lo; 1 < hi; 1i++)
ans += arr|[i];
ans;
} {

SumTask left

SumTask (arr, lo, (hi+lo)/2);
SumTask (arr, (hi+lo) /2, hl);

sumTa 1ght
1eft.(); / fork a ead and calls compute

int rrehitAns right.dompute ();//call compute directly
int leftAns leit.gO%l’l(); // get result from left
leftAns + rig ns;

> 1 |l

}
}

}
ForkJdoinPool éggg = ForkJoinPool () ;

int sum(int e {—
SumTas= SumTask (arr,0,arr. lenqth)
POOL.invoke(task)
// invoke refturns thie value compute returns

32

Any Questions?

I —

It shouldn’t be too hard to imagine how to modify our code to:

1.

o Uk W

Find the maximum element in an array.

Determine if there is an element meeting some property.
Find the left-most element satisfying some property.
Count the number of elements meeting some property.
Check if elements are in sorted order.

[And so on...]

In O(log N) !!!

Fork-Join Reduce:

MaxTask RecursiveTask<Integer> {
int lo; int hi; int[] arr; // fields to know what to do
MaxTask (int[] a, int 1, int h) { .. }

Integer compute () {// return answer
(hi1 - lo <= SEQUENTIAIL CUTOFF) {

int ans = a[lo]; // local var, not a field
(int i=lo:; 3]
\éns = Math.max (ans,ali]);
armnrsy
} {
MaxTask left = MaxTask (arr, lo, (hi+lo)/2);
MaxTask right= MaxTask (arr, (h1+lo)/2 hi) ;
left.fork(); // fork a thread and calls compute
int rightAns = right. compute() //call compute directly
int leftAn in ult from left

ath.max(leftAns, rlghtAns);

}
}
}

ForkJoinPool POOL = ForkJoinPool () ;
int sum(int[] arr) {
MaxTask task = MaxTask (arr,0,arr.length)

POOL.invoke (task) ;
// invoke returns the value compute returns

Reduce

You’ll do similar problems in section.
The key is to describe:
1. How to compute the answer at the cut-off.

2. How to merge the results of two subarrays.

We say parallel code like this “reduces” the array

We’re reducing the arrays to a single item

Then combining with ar\associative operation]
e.g. sum, max, leftmost, product, count, or, and, ...

Doesn’t have to be a single number, could be an object.

Even easier: Maps (Data Parallelism)

c A operates on each element of a collection independently to
create a new collection of the same size

* No combining results -
* For arrays, this is so trivial some hardware has direct support m
* Canonical example: Vector addition —STTS W“@
int[] vector addéig;Ll;égzlL‘i§E[] arr2){
(arrl.léngth == arr2.length);
result = int[arrl.length];

(i=0; i < arrl.length; i++) {
result[i] = arrl[i] + arr2[i];

}

result;

Maps in ForkJoin Framework

VecAdd RecursiveAction {
int lo; int hi; int[] res; int[] arrl; int[] arr2;
VecAdd (int 1,int h,int[] r,int[] al,int[] a2){ .. }
void compute () {
(hi - lo <= SEQUENTIAL CUTOFF) ({
(int i=lo; i < hi; I++)
res[i] = arrl[i] + arr2[i];
} {
int mid = (hi+lo)/2;
VecAdd left = VecAdd (lo,mid, res,arrl,arr2) ;
VecAdd right= VecAdd (mid,hi,res,arrl,arr2) ;
left.fork () ;
right.compute () ;
left.join() ;
}
}

}
ForkJoinPool POOL = ForkJoinPool () ;
int[] add(int[] arrl, int[] arr2) {
(arrl.length == arr2.length) ;
int[] ans = int[arrl.length];
POOL. invoke (VecAdd (0,arr.length,ans,arrl, arr2);
ans;

Maps and reductions

[aps and reductions: the “workhorses” of parallel programming
e By far 0 most important and common patterns

* Two more-advanced patterns in next lecture

* Learn to recognize when an algorithm can be written in terms of maps and
reductions

e Use maps and reductions to describe (parallel) algorithms

I”

* Programming them becomes “trivial” with a little practice
* Exactly like sequential for-loops seem second-nature

\

Map vs reduce in ForkJoin framework

In our examples:

e Reduce:
e Parallel-sum extended RecursiveTask
e Result was returned from compute()

* Map:
* Class extended was RecursiveAction
* Nothing returned from compute()
* In the above code, the ‘answer’ array was passed in as a parameter

Map vs reduce in ForkJoin framework

In our examples:

e Reduce:
e Parallel-sum extended RecursiveTask
e Result was returned from compute()

* Map:
* Class extended was RecursiveAction
* Nothing returned from compute()
* In the above code, the ‘answer’ array was passed in as a parameter

