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Changing a major assumption

Assumption: One thing happened at a time

Called sequential programming — everything part of one sequence

Removing this assumption creates major challenges & opportunities

* Programming: Divide work among threads of execution and
coordinate (synchronize) among them

* Algorithms: How can parallel activity provide speed-up

e (more throughput: work done per unittime)
e Data structures: May need to squ

e (multiple threads operating on data at the same time)




A simplified view of history

* Writing correct and efficient multithreaded code is often much more
difficult than for single-threaded (i.e., sequential) code
e Especially in common languages like Java and C
* So typically stay sequential if possible

* From roughly 1980-2005, desktop computers got exponentially faster
at running sequential programs

* About twice as fast every couple years

* But nobody knows how to continue this

* Increasing clock rate generates too much heat
\A

* Relative cost of memory access is too high

* But we can keep making “wires exponentially smaller” (Moore’s “Law”), so

put multiple pracessors on the same chip (“multicore™)— T




What to do with multiple processors?

20 10s

* Next computer you buy will likely hav\e@ocessors
* Wait a few years and it will be 8, 16, 32, ...
* The chip companies have decided to do this (not a “law”)

hat ¢
 Run multiple totally different programs at the same time
at? Yes, but with time-slicing

 Do.multiple thing®at Wprogram\

* Our focus — more difficult
* Requires rethinking everything from asmetotic complexity to how to implement data-

structure operati — T =
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Parallelism vs Concurrency

* No agreed definition :(

Our definition:

Use extra resources to Correctly and efficiently manage
£exira reso

solve a problem faster acces ared resources

resource

There is %m?COﬁHeCtLQﬂ\
e Common to use threads for both
e |f parallel computations need access to shared resources, then the concurrency needs

to be managed




An analogy

RN
* Intro CS idea: A program is Iikeﬂ@r a cook

* One cook who does one thing at a time! (Sequential)

 Parallelism: (Let’s get the job done faster!) a1 P e
* Have lots of potatoes to slice?
* Hire helpers, hand out potatoes and knives
e But too many chefs and you spend all your time coordinating

e Concurrency: (We need to manage a sh rce)

* Lots of cooks making different things, but anly 1 fridge
* Want to allow access to this fridge without fighti




Parallelis

* Parallelism: Use extra computational resources to solve a problem
faster (increasing throughput via simultaneous executign

2 )
e Pseudocode (not Java yet) for array sum: é"

* No such ‘FORALL’ construct, but we’ll see something similar
R
* Bad style, but with 4 processors may get roughly 4x speedup

Wint Sum

) //parallel iterations
arr,i*len/4, (i+l) *len/4) ;

res[O]+res[1]+reS[2]+reS[3];

int sumRange(int[] arr, int lo, int hi) {
result = 0;
(7=1lo; J < hi; J++)
result += arr([j];
result;



Concurrency Example

* Concurrency: Correctly and efficiently manage access to shared resources (from
multiple possibly-simultaneous clients)
* e.g., Multiple threads accessing a hash-table, but not getting in each others’ ways

* Pseudocode (notJava) for a shared chaining hashtable
* Essential correctness issue is preventing bad interleavings

» Essential performance issue not preventing good concurrency

* One ‘solution’ to preventing bad inter-leavings is to do it all sequentially
Hashtable<K, V> {

~

v01d insert (K key, V value) {
/////////:jj> lnt bucket =
V lookup (K key) {

(similar to insert, but can allow concurrent
lookups to same bucket)




Ao de

Shared memory with Threads

The model we will assume is shared memory with explicit threads

* Old story: A running program has
* One program counter (current statement executing)

* One call stack{with each stack frame holding local variables)

* Objects in the heap created by memory allocation (i.e., new)
* (nothing to do with data structure called a heap)

* Staticfields
* New story:
* Ase hreads, each with its own program counter & call stack
P YeldTT R o et

* No access to another thread’s local variables
* Threads can (implicitly) share static fields / objects

* To communicate, write values to some shared location that another thread
reads from




Old Story: One call stack, one pc

Heap for all objects

« (Call stack with local variables and static fields

* pc determines current statement
* local variables are numbers/null
or heap references

10



New Story: Shared memory with Threads

Heap for all objects
and static fields, shared

Threads, each with own unshared by all threads

call stack and “program counter”
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Other models

We will focus on shared memory, but you should know several other
models exist and have their own advantages

* Message-passing: Each thread has its own collection of objects.
\_’—.

Communication is via explicitly sending/receiving messages
* Cooks working in separate kitchens, mail around ingredients

 Dataflow: Programmers write programs in terms of a DAG.

* A node executes after all of its predecessors in the graph
e Cooks wait to be handed results of previous steps

e Data parallelism: Have primitives for things like “apply function to
every element of an array in lel” |




Our Needs

* To write a shared-memory parallel program, need new primitives
from a programming language or library

* Ways to create and run multiple things at once
* Let’s call these things threads
/\

* Ways for threads to share memory
* Often just have threads with references-to the same objects _

 Ways for threads to coordinate (a.k.a. synchronize)

* For now, a way for one thread to wait for another to finish
e Other primitives when we study concurrency




Java basics

* First learn some basics built into Java via java.lang.Thread
* Then a better library for parallel programmin

* To get a new thread running:
* Define a subeglass C of java.lang.Thread,(overriding run

* Create anobject of class C
* Call that object’s start method
* start sets off a new thread, using fun as its “main”

* What if we instead called the%@)methgd of C?
* This would just be a normal method call, in the current thread

* Let’s see how to share memory and coordinate via an example...




Parallelism ldea

« Example: Sum elements of a large array
* Idea: Have 4 threads simultaneously sum 1/4 of the array
— Warning: This is an inferior first approach

T s
ans

— Create 4 thread objects, each given a portion of the work

— Call start () on each thread obj actually run it in parallel

— Wait for threads to finish using joi

— Add together their 4 answers for the final result

15



First attempt, part 1

java.lang.Thread {

int lo; // fields, assigned in the constructor
int hi; // so threads know what to do.

int[] arr;

int ans = 0; // result

SumThread (int[] a, int 1, 1int h) {
lo=1; hi=h; arr;a?=:z” =

}

void run() { //override must have this type
(int i=lo; i < hi; i++)
ans += arr[i];
} — —

16



First attempt, continued (wrong)

SumThread java.lang.Thread {
int lo, int hi, int[] arr; // fields to know what to do
int ans = 0; // result
SumThread (int[] a, int 1, int h) { .. }
void run(){ .. } // override
}
int sum(int[] arr){ // can be a static method
int len = arr.length;
int ans = 0;
SumThread[] ts = SumThread[4];
(int IT=07 4; i++) // do parallel computations
ts[i] = SumThread (arr,i*len/4, (i+1) *len/4) ;

or(int i=0; 1 < 4; i++) // combine results
208 S= ES[1] Emss

ans;
o Grer
}
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Second attempt (still wrong)

SumThread java.lang.Thread {
int lo, int hi, int[] arr; // fields to know what to do
int ans = 0; // result
SumThread (int[] a, int 1, int h) { .. }
void run(){ .. } // override
}
int sum(int[] arr){// can be a static method
int len = arr.length;
int ans = 0;
SumThread[] ts = SumThread[4];
(int 1i=0; 1 < 4; i++){// do parallel computations
ts[i] = SumThread (arr,i*len/4, (i+1) *len/4) ;

ts[i].start(); // start not run

}

(int 1=0; 1 < 4; i++) // combine results

ans += ts[i1].ans;
ans;
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Third attempt (correct in spirit)

SumThread java.lang.Thread {
int lo, int hi, int[] arr; // fields to know what to do
int ans = 0; // result
SumThread (int[] a, int 1, int h) { .. }
void run(){ .. } // override
}
int sum(int[] arr){// can be a static method
int len = arr.length;
int ans = 0;
SumThread[] ts = SumThread[4];
(int 1=0; i < (4; i++){// do parallel computations
ts[i] = SumThread (arr,i*len/4, (i+1) *len/4) ;

ts[i].start () ;

}
(int 1i=0; 1 < 4; i++) { // combine results

jEL_J—;Qéﬂi___// wait for helper to finish!

ans += ts]| .ans;
} x

ansy
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A better approach

Several reasons why this is a poor parallel algorithm

1. Want code to be reusable and efficient across platforms

* “Forward-portable” as core count grows

* So at the very least, parameterize by the number of threads

int sum(int[] arr, int mumTs)

]
int ans = 0;
SumThread[] ts = SumThread [numTs] ;
(int 1=0; i < numTs; i++) {
ts[i] = SumThread (arr, (i*arr.length) /numTs,

((i+1) *arr.length) /numTs) ;

ts[i] .start () ;

}
(int 1=0; 1 < numTs; 1++) {
ts[i].join(); —
ans += ts[i].ans;

}

ansy



A better approach

2. Want to use (only) processors “available to you now”

* Notused by other programs or threads in your program

Maybe calleris also using parallelism
* Available cores can change even while your threads run

 If you have 3 processors available and using 3 threads would take time X,
then creating 4 threads would take time 1. 5X

e Example: 12 units of work, 3 processors
e  Work divided into 3 parts will take 4 units of time
. Work divided into 4 parts will take 3*2 units of time

// numThreads == numProcessors 1is bad
// 1f some are needed for other things
int sum(int[] arr, int numTs) {

}



A better approach ! @, @,

3. Though unlikely for sum, in general subproblems may take
significantly different amounts of time™ { {7

Example: Apply method £ to every array element, but maybe £ is
much slower for some data items
Example: Is a large integer prime?

If we create 4 threads and all the slow data is processed by 1 of
them, we won’t get nearly a 4x speedup
Example of a

/




]

g

A better approach

The counterintuitive (?) solution to all these prob s to cut up our problem into many
pieces, far more than the number of ssors
/4 ?% L )

— But this will require changing our algorithm
..... Java’s threads.

A YONANL Y SO\ TONALT
C S

S~ - A % ——

1. Fo ; ver many processors exist, they will be kept busy w/ small
chunks

2. Processors available: Hand out "work chunks” as you go

3. Load imbalance: Variation probably small if pieces of work are small

23



Naive algorithm is poor

Suppose we create 1 thread to process every 1000 elements

int sum(int|[] arr) {

NN
int numThreads = arr.length / 1000;
SumThread[] ts = SumThread [numThreads] ;

Then the “combining of results” part of the code will have arr.length / 1000 additions
* Linear in size of array (with constant factor 1/1000)
* Previous we had only 4 pieces (6(1) to combine)

e |nthe extreme, suppose we create one thread per element — If we use a for loop to combine the
results, we have N iterations

e |n either case we get a ©(N) algorithm with the combining of results as the bottleneck....



A better idea: Divide and Conquer!

1) Divide problem into pieces recursively:
— Start with full problem at root
— Halve and make new thread until size is at some cutoff
2) Combine answers in pairs as we return from recursion (see diagram)

Th|s will start small, and ‘grow’ threads to fit the problem

This is straightforward to implement using divide-and-conquer
 Parallelism for the recursive calls

25



Remember Mergesort?




Code looks something like this

TN

SumThread java.lang.Thread {
int Io; Imt hi; int[] arr; // fields to know what to do
int ans = 0; // result

SumThread(int[] a, int 1, int h)y { .. }

void run(){ // override
Q(; lo <= SEQUENTIAL CUTOF¥}
Tnt—T—to;— T < hi; 1++)
l ans += arr|[1i];

left.start
right.start (

right.join () ;
ans = left.ans + right.ans;
}

}

} L

(OO

SumThread left = SumThread (arr, lo, (hi+lo)/2) ;
SumThread right= SumThread (arr,

(hi+lo)/2,hi);

I‘ff‘j@ln()‘—77 don’t move this up a line - why?

J&

int sum(int[] arr){ // just make one thread!

ad T = SsumThread (arr,0,arr.length) ;
é.ans;

}

4
v
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Optimizatio

// wasteful: don’t // better: do!!
SumThread left .
SumThread right

left.start () ;

SumThread left
SumThread right

left.start () ; Note: run isa

right.start() ;

left.join() ;
right.join() ;

91' ight .run{)y normal function call!

execution won’t

continue until we
are done with run

—E?}eft.join(); (D

/ no right.join needed —

ans=left.ans+right.ans; ans=left.ans+right.ans;

If a language had built-in support for fork-join parallelism, |
would expect this hand-optimization to be unnecessary

But the library we are using expects you to do it yourself
— And the difference is surprisingly substantial
Again, no difference in theory

order of last 4 lines
Is critical — why?

=%

O

S

.

v

%
V7
O
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Creating Fewer Threads

2 new threads at each step

(and only leaf threads @/+ \O

do much work)
ota O @/ \O
-|1-5tI!1reads &()\@/ E/J'\@ @ @ 14 +\ 15
AN A NN /N
o i i iy
(O T T T

1 new thread

1
at each step @/”f \@

-SI—Ottf?:ezads 3/ .2 ) / \ '
5 43 62 7t \ ./ U
Va ' N AN AN A NN

e i oy i e iy
ANNNANRRNNNRRANRRRRRNRRRRRNNR NN RN AN RN NN RN RN NN .




e tue ﬁT f rome wor &
That library, finally [or /%u%&//m /

* Even with all this care, Java’s threads are too “heavyweight”

* Constant factors, especially space overhead
e Creating 20,000 Java threads just a bad idea :(

* The ForkJoin Framework is designed to meet the needs of divide-and-
conquer fork-join parallelism —
* In the Java 8 standard libraries
* Section will focus on pragmatics/logistics

e Similar libraries available for other languages

e C/C++: Cilk (inventors), Intel’s Thread Building Blocks
e C#: Task Parallel Library

e Library’s i lon is a inati d topic



Different terms, same basic idea

To use the ForkJoin Framework:

* A little standard set-up code (e.g., create a ForkJoinPool)

Java Threads: ForkJoin Framework:
Don’t subclass Thread LDO subclass RecursiveTask<V>
Don't overrlde& Do override compute
¢ 4 Do retu rr@?m—;)mpute
Do call fork
Do ca ;%Q (which returns answer)
Don’t call run to hand-optimize Do call compute to hand-optimize
D/on’t have a topmost call to run Do create a pool and call invoke

\_Q



Fork-Join Framework Version:,/~

SumTask RecursiveTask<Integer> {
int lo; int hi; int[] arr; // fields to know what to d
SumTask (int[] a, int 1, int h) { .. }
Integer compute () {// return answer
(hi - lo <= SEQUENTIAL CUTQEF) {
int ans = 0; // local var, not a field
(int i=lo; 1 < hi; 1i++)
ans += arr|[i];
ans;
} {

SumTask left

SumTask (arr, lo, (hi+lo)/2);
SumTask (arr, (hi+lo) /2, hl);

sumTa 1ght
1eft.(); / fork a ead and calls compute

int rrehitAns right.dompute ();//call compute directly
int leftAns leit.gO%l’l(); // get result from left
leftAns + rig ns;

> 1 |l

}
}

}
ForkJdoinPool éggg = ForkJoinPool () ;

int sum(int e {—
SumTas= SumTask (arr,0,arr. lenqth)
POOL.invoke(task)
// invoke refturns thie value compute returns

32



Any Questions?



I —

It shouldn’t be too hard to imagine how to modify our code to:

1.

o Uk W

Find the maximum element in an array.

Determine if there is an element meeting some property.
Find the left-most element satisfying some property.
Count the number of elements meeting some property.
Check if elements are in sorted order.

[And so on...]

In O(log N) !!!




Fork-Join Reduce:

MaxTask RecursiveTask<Integer> {
int lo; int hi; int[] arr; // fields to know what to do
MaxTask (int[] a, int 1, int h) { .. }

Integer compute () {// return answer
(hi1 - lo <= SEQUENTIAIL CUTOFF) {

int ans = a[lo]; // local var, not a field
(int i=lo:; 3 ]
\éns = Math.max (ans,ali]);
armnrsy
} {
MaxTask left = MaxTask (arr, lo, (hi+lo)/2);
MaxTask right= MaxTask (arr, (h1+lo)/2 hi) ;
left.fork(); // fork a thread and calls compute
int rightAns = right. compute() //call compute directly
int leftAn in ult from left

ath.max(leftAns, rlghtAns);

}
}
}

ForkJoinPool POOL = ForkJoinPool () ;
int sum(int[] arr) {
MaxTask task = MaxTask (arr,0,arr.length)

POOL.invoke (task) ;
// invoke returns the value compute returns



Reduce

You’ll do similar problems in section.
The key is to describe:
1. How to compute the answer at the cut-off.

2. How to merge the results of two subarrays.

We say parallel code like this “reduces” the array

We’re reducing the arrays to a single item

Then combining with ar\associative operation]
e.g. sum, max, leftmost, product, count, or, and, ...

Doesn’t have to be a single number, could be an object.



Even easier: Maps (Data Parallelism)

c A operates on each element of a collection independently to
create a new collection of the same size

* No combining results -
* For arrays, this is so trivial some hardware has direct support m
* Canonical example: Vector addition —STTS W“@
int[] vector addéig;Ll;égzlL‘i§E[] arr2){
(arrl.léngth == arr2.length);
result = int[arrl.length];

(i=0; i < arrl.length; i++) {
result[i] = arrl[i] + arr2[i];

}

result;



Maps in ForkJoin Framework

VecAdd RecursiveAction {
int lo; int hi; int[] res; int[] arrl; int[] arr2;
VecAdd (int 1,int h,int[] r,int[] al,int[] a2){ .. }
void compute () {
(hi - lo <= SEQUENTIAL CUTOFF) ({
(int i=lo; i < hi; I++)
res[i] = arrl[i] + arr2[i];
} {
int mid = (hi+lo)/2;
VecAdd left = VecAdd (lo,mid, res,arrl,arr2) ;
VecAdd right= VecAdd (mid,hi,res,arrl,arr2) ;
left.fork () ;
right.compute () ;
left.join() ;
}
}

}
ForkJoinPool POOL = ForkJoinPool () ;
int[] add(int[] arrl, int[] arr2) {
(arrl.length == arr2.length) ;
int[] ans = int[arrl.length];
POOL. invoke ( VecAdd (0,arr.length,ans,arrl, arr2);
ans;



Maps and reductions

[ aps and reductions: the “workhorses” of parallel programming
e By far 0 most important and common patterns

* Two more-advanced patterns in next lecture

* Learn to recognize when an algorithm can be written in terms of maps and
reductions

e Use maps and reductions to describe (parallel) algorithms

I”

* Programming them becomes “trivial” with a little practice
* Exactly like sequential for-loops seem second-nature

\




Map vs reduce in ForkJoin framework

In our examples:

e Reduce:
e Parallel-sum extended RecursiveTask
e Result was returned from compute()

* Map:
* Class extended was RecursiveAction
* Nothing returned from compute()
* In the above code, the ‘answer’ array was passed in as a parameter



Map vs reduce in ForkJoin framework

In our examples:

e Reduce:
e Parallel-sum extended RecursiveTask
e Result was returned from compute()

* Map:
* Class extended was RecursiveAction
* Nothing returned from compute()
* In the above code, the ‘answer’ array was passed in as a parameter



