
Lecture 18: Introduction to
Multithreading & Fork-Join

Parallelism
CSE 332: Data Structures & Parallelism

Yafqa Khan

Summer 2025

1

Changing a major assumption

Assumption: One thing happened at a time

Called sequential programming – everything part of one sequence

Removing this assumption creates major challenges & opportunities

• Programming: Divide work among threads of execution and
coordinate (synchronize) among them

• Algorithms: How can parallel activity provide speed-up
• (more throughput: work done per unit time)

• Data structures: May need to support concurrent access
• (multiple threads operating on data at the same time)

2

A simplified view of history

• Writing correct and efficient multithreaded code is often much more
difficult than for single-threaded (i.e., sequential) code

• Especially in common languages like Java and C

• So typically stay sequential if possible

• From roughly 1980-2005, desktop computers got exponentially faster
at running sequential programs

• About twice as fast every couple years

• But nobody knows how to continue this
• Increasing clock rate generates too much heat

• Relative cost of memory access is too high

• But we can keep making “wires exponentially smaller” (Moore’s “Law”), so
put multiple processors on the same chip (“multicore”) 3

What to do with multiple processors?

• Next computer you buy will likely have 4 processors
• Wait a few years and it will be 8, 16, 32, …

• The chip companies have decided to do this (not a “law”)

• What can you do with them?
• Run multiple totally different programs at the same time

• Already do that? Yes, but with time-slicing

• Do multiple things at once in one program
• Our focus – more difficult

• Requires rethinking everything from asymptotic complexity to how to implement data-
structure operations

4

Parallelism vs Concurrency

• No agreed definition :(

Our definition:

5

There is some connection:

• Common to use threads for both

• If parallel computations need access to shared resources, then the concurrency needs
to be managed

Parallelism:

 Use extra resources to

 solve a problem faster

resources

Concurrency:

 Correctly and efficiently manage

 access to shared resources

requestswork

resource

An analogy

• Intro CS idea: A program is like a recipe for a cook
• One cook who does one thing at a time! (Sequential)

• Parallelism: (Let’s get the job done faster!)
• Have lots of potatoes to slice?

• Hire helpers, hand out potatoes and knives

• But too many chefs and you spend all your time coordinating

• Concurrency: (We need to manage a shared resource)
• Lots of cooks making different things, but only 1 fridge

• Want to allow access to this fridge without fighting

6

Parallelism Example
• Parallelism: Use extra computational resources to solve a problem

faster (increasing throughput via simultaneous execution)

• Pseudocode (not Java yet) for array sum:
• No such ‘FORALL’ construct, but we’ll see something similar

• Bad style, but with 4 processors may get roughly 4x speedup

7

int sum(int[] arr){
 res = new int[4];
 len = arr.length;
 FORALL(i=0; i < 4; i++) { //parallel iterations
 res[i] = sumRange(arr,i*len/4,(i+1)*len/4);
 }
 return res[0]+res[1]+res[2]+res[3];
}
int sumRange(int[] arr, int lo, int hi) {
 result = 0;
 for(j=lo; j < hi; j++)
 result += arr[j];
 return result;
}

Concurrency Example
• Concurrency: Correctly and efficiently manage access to shared resources (from

multiple possibly-simultaneous clients)
• e.g., Multiple threads accessing a hash-table, but not getting in each others’ ways

• Pseudocode (not Java) for a shared chaining hashtable
• Essential correctness issue is preventing bad interleavings

• Essential performance issue not preventing good concurrency

• One ‘solution’ to preventing bad inter-leavings is to do it all sequentially

8

class Hashtable<K,V> {
 …
 void insert(K key, V value) {
 int bucket = …;
 prevent-other-inserts/lookups in table[bucket]
 do the insertion
 re-enable access to table[bucket]
 }
 V lookup(K key) {
 (similar to insert, but can allow concurrent
 lookups to same bucket)
 }
}

Shared memory with Threads
The model we will assume is shared memory with explicit threads

• Old story: A running program has
• One program counter (current statement executing)

• One call stack (with each stack frame holding local variables)

• Objects in the heap created by memory allocation (i.e., new)
• (nothing to do with data structure called a heap)

• Static fields

• New story:
• A set of threads, each with its own program counter & call stack

• No access to another thread’s local variables

• Threads can (implicitly) share static fields / objects

• To communicate, write values to some shared location that another thread
reads from 9

Old Story: One call stack, one pc

10

…

Heap for all objects

and static fields
• Call stack with local variables

• pc determines current statement

• local variables are numbers/null

or heap references

pc=0x…

…

New Story: Shared memory with Threads

11

…

Heap for all objects

and static fields, shared

by all threads
Threads, each with own unshared

call stack and “program counter”

pc=0x…

…

pc=0x…

…

pc=0x…

…

Other models

We will focus on shared memory, but you should know several other
models exist and have their own advantages

• Message-passing: Each thread has its own collection of objects.
Communication is via explicitly sending/receiving messages

• Cooks working in separate kitchens, mail around ingredients

• Dataflow: Programmers write programs in terms of a DAG.
• A node executes after all of its predecessors in the graph

• Cooks wait to be handed results of previous steps

• Data parallelism: Have primitives for things like “apply function to
every element of an array in parallel”

12

Our Needs

• To write a shared-memory parallel program, need new primitives
from a programming language or library

• Ways to create and run multiple things at once
• Let’s call these things threads

• Ways for threads to share memory
• Often just have threads with references to the same objects

• Ways for threads to coordinate (a.k.a. synchronize)
• For now, a way for one thread to wait for another to finish

• Other primitives when we study concurrency

13

Java basics

• First learn some basics built into Java via java.lang.Thread
• Then a better library for parallel programming

• To get a new thread running:
• Define a subclass C of java.lang.Thread, overriding run

• Create an object of class C

• Call that object’s start method
• start sets off a new thread, using run as its “main”

• What if we instead called the run method of C?
• This would just be a normal method call, in the current thread

• Let’s see how to share memory and coordinate via an example…

14

Parallelism Idea

15

• Example: Sum elements of a large array

• Idea: Have 4 threads simultaneously sum 1/4 of the array

– Warning: This is an inferior first approach

 ans0 ans1 ans2 ans3

 +

 ans

– Create 4 thread objects, each given a portion of the work

– Call start() on each thread object to actually run it in parallel

– Wait for threads to finish using join()

– Add together their 4 answers for the final result

First attempt, part 1

16

class SumThread extends java.lang.Thread {

 int lo; // fields, assigned in the constructor
 int hi; // so threads know what to do.
 int[] arr;

 int ans = 0; // result

 SumThread(int[] a, int l, int h) {
 lo=l; hi=h; arr=a;
 }

 public void run() { //override must have this type
 for(int i=lo; i < hi; i++)
 ans += arr[i];
 }
}

First attempt, continued (wrong)

17

class SumThread extends java.lang.Thread {
 int lo, int hi, int[] arr; // fields to know what to do
 int ans = 0; // result
 SumThread(int[] a, int l, int h) { … }
 public void run(){ … } // override
}

int sum(int[] arr){ // can be a static method

 int len = arr.length;

 int ans = 0;

 SumThread[] ts = new SumThread[4];

 for(int i=0; i < 4; i++) // do parallel computations

 ts[i] = new SumThread(arr,i*len/4,(i+1)*len/4);

 for(int i=0; i < 4; i++) // combine results

 ans += ts[i].ans;

 return ans;

}

Second attempt (still wrong)

18

int sum(int[] arr){// can be a static method

 int len = arr.length;

 int ans = 0;

 SumThread[] ts = new SumThread[4];

 for(int i=0; i < 4; i++){// do parallel computations

 ts[i] = new SumThread(arr,i*len/4,(i+1)*len/4);

 ts[i].start(); // start not run

 }

 for(int i=0; i < 4; i++) // combine results

 ans += ts[i].ans;

 return ans;

}

class SumThread extends java.lang.Thread {
 int lo, int hi, int[] arr; // fields to know what to do
 int ans = 0; // result
 SumThread(int[] a, int l, int h) { … }
 public void run(){ … } // override
}

Third attempt (correct in spirit)

19

int sum(int[] arr){// can be a static method
 int len = arr.length;
 int ans = 0;
 SumThread[] ts = new SumThread[4];
 for(int i=0; i < 4; i++){// do parallel computations
 ts[i] = new SumThread(arr,i*len/4,(i+1)*len/4);
 ts[i].start();
 }
 for(int i=0; i < 4; i++) { // combine results
 ts[i].join(); // wait for helper to finish!
 ans += ts[i].ans;
 }
 return ans;
}

class SumThread extends java.lang.Thread {
 int lo, int hi, int[] arr; // fields to know what to do
 int ans = 0; // result
 SumThread(int[] a, int l, int h) { … }
 public void run(){ … } // override
}

A better approach

20

Several reasons why this is a poor parallel algorithm

1. Want code to be reusable and efficient across platforms
• “Forward-portable” as core count grows

• So at the very least, parameterize by the number of threads

int sum(int[] arr, int numTs){
 int ans = 0;
 SumThread[] ts = new SumThread[numTs];
 for(int i=0; i < numTs; i++){
 ts[i] = new SumThread(arr,(i*arr.length)/numTs,
 ((i+1)*arr.length)/numTs);
 ts[i].start();
 }
 for(int i=0; i < numTs; i++) {
 ts[i].join();
 ans += ts[i].ans;
 }
 return ans;
}

A better approach

21

2. Want to use (only) processors “available to you now”

• Not used by other programs or threads in your program
• Maybe caller is also using parallelism

• Available cores can change even while your threads run

• If you have 3 processors available and using 3 threads would take time X,
then creating 4 threads would take time 1.5X
• Example: 12 units of work, 3 processors

• Work divided into 3 parts will take 4 units of time

• Work divided into 4 parts will take 3*2 units of time

// numThreads == numProcessors is bad
// if some are needed for other things
int sum(int[] arr, int numTs){
 …
}

A better approach

22

3. Though unlikely for sum, in general subproblems may take

significantly different amounts of time

Example: Apply method f to every array element, but maybe f is
much slower for some data items
Example: Is a large integer prime?

If we create 4 threads and all the slow data is processed by 1 of
them, we won’t get nearly a 4x speedup
Example of a load imbalance

A better approach

23

The counterintuitive (?) solution to all these problems is to cut up our problem into many

pieces, far more than the number of processors

– But this will require changing our algorithm

– And for constant-factor reasons, abandoning Java’s threads

 ans0 ans1 … ansN

 ans

1. Forward-portable: However many processors exist, they will be kept busy w/ small

chunks

2. Processors available: Hand out “work chunks” as you go

3. Load imbalance: Variation probably small if pieces of work are small

Naive algorithm is poor

24

Suppose we create 1 thread to process every 1000 elements

int sum(int[] arr){
 …
 int numThreads = arr.length / 1000;
 SumThread[] ts = new SumThread[numThreads];
 …
}

Then the “combining of results” part of the code will have arr.length / 1000 additions

• Linear in size of array (with constant factor 1/1000)

• Previous we had only 4 pieces (Ө(1) to combine)

• In the extreme, suppose we create one thread per element – If we use a for loop to combine the
results, we have N iterations

• In either case we get a Ө(N) algorithm with the combining of results as the bottleneck….

A better idea: Divide and Conquer!

25

This will start small, and ‘grow’ threads to fit the problem

This is straightforward to implement using divide-and-conquer
• Parallelism for the recursive calls

+ + + + + + + +

+ + + +

+ +

+

1) Divide problem into pieces recursively:

– Start with full problem at root

– Halve and make new thread until size is at some cutoff

2) Combine answers in pairs as we return from recursion (see diagram)

Remember Mergesort?

26

8 2 9 4 5 3 1 6

8 2 1 69 4 5 3

8 2

2 8

2 4 8 9

1 2 3 4 5 6 8 9

Merge

Merge

Merge

Divide

Divide

Divide

1 element

8 2 9 4 5 3 1 6

9 4 5 3 1 6

4 9 3 5 1 6

1 3 5 6

Code looks something like this

27

class SumThread extends java.lang.Thread {
 int lo; int hi; int[] arr; // fields to know what to do
 int ans = 0; // result
 SumThread(int[] a, int l, int h) { … }
 public void run(){ // override
 if(hi – lo <= SEQUENTIAL_CUTOFF)
 for(int i=lo; i < hi; i++)
 ans += arr[i];
 else {
 SumThread left = new SumThread(arr,lo,(hi+lo)/2);
 SumThread right= new SumThread(arr,(hi+lo)/2,hi);
 left.start();
 right.start();
 left.join(); // don’t move this up a line – why?
 right.join();
 ans = left.ans + right.ans;
 }
 }
}
int sum(int[] arr){ // just make one thread!
 SumThread t = new SumThread(arr,0,arr.length);
 t.run();
 return t.ans;
}

Optimization: ~Half the threads!

28

• If a language had built-in support for fork-join parallelism, I

would expect this hand-optimization to be unnecessary

• But the library we are using expects you to do it yourself

– And the difference is surprisingly substantial

• Again, no difference in theory

// wasteful: don’t
SumThread left = …
SumThread right = …

left.start();
right.start();

left.join();
right.join();
ans=left.ans+right.ans;

// better: do!!
SumThread left = …
SumThread right = …

left.start();
right.run();

left.join();
// no right.join needed
ans=left.ans+right.ans;

order of last 4 lines
Is critical – why?

Note: run is a

normal function call!

execution won’t

continue until we

are done with run

Creating Fewer Threads

29

2 new threads at each step
(and only leaf threads
do much work)
Total =
15 threads

1 new thread
at each step
Total =
8 threads

15
+

14
+

13
 +

12
 +

11
+

10
 +

9
+

8
 +

7
+

6
+

5
+

4
+

3
+

2
+

1
+

1
+

8
+

4
 +

7
 +

2
+

6
 +

3
+

5
 +

1
+

4
+

2
+

3
+

1
+

2
+

1
+

That library, finally

• Even with all this care, Java’s threads are too “heavyweight”
• Constant factors, especially space overhead

• Creating 20,000 Java threads just a bad idea :(

• The ForkJoin Framework is designed to meet the needs of divide-and-
conquer fork-join parallelism

• In the Java 8 standard libraries

• Section will focus on pragmatics/logistics

• Similar libraries available for other languages
• C/C++: Cilk (inventors), Intel’s Thread Building Blocks

• C#: Task Parallel Library

• …

• Library’s implementation is a fascinating but advanced topic
30

Different terms, same basic idea

31

To use the ForkJoin Framework:

• A little standard set-up code (e.g., create a ForkJoinPool)

 Java Threads: ForkJoin Framework:

Don’t subclass Thread Do subclass RecursiveTask<V>

Don’t override run Do override compute

Do not use an ans field Do return a V from compute

Don’t call start Do call fork

Don’t just call join Do call join (which returns answer)

Don’t call run to hand-optimize Do call compute to hand-optimize

Don’t have a topmost call to run Do create a pool and call invoke

Fork-Join Framework Version:

32

class SumTask extends RecursiveTask<Integer> {
 int lo; int hi; int[] arr; // fields to know what to do
 SumTask(int[] a, int l, int h) { … }
 protected Integer compute(){// return answer
 if(hi – lo <= SEQUENTIAL_CUTOFF) {
 int ans = 0; // local var, not a field
 for(int i=lo; i < hi; i++)
 ans += arr[i];
 return ans;
 } else {
 SumTask left = new SumTask(arr,lo,(hi+lo)/2);
 SumTask right= new SumTask(arr,(hi+lo)/2,hi);
 left.fork(); // fork a thread and calls compute
 int rightAns = right.compute();//call compute directly
 int leftAns = left.join(); // get result from left
 return leftAns + rightAns;
 }
 }
}
static final ForkJoinPool POOL = new ForkJoinPool();
int sum(int[] arr){
 SumTask task = new SumTask(arr,0,arr.length)
 return POOL.invoke(task);
 // invoke returns the value compute returns
}

Any Questions?

33

Reduce

It shouldn’t be too hard to imagine how to modify our code to:

1. Find the maximum element in an array.

2. Determine if there is an element meeting some property.

3. Find the left-most element satisfying some property.

4. Count the number of elements meeting some property.

5. Check if elements are in sorted order.

6. [And so on…]

In O(log N) !!!

07/27/2022

Fork-Join Reduce:
class MaxTask extends RecursiveTask<Integer> {
 int lo; int hi; int[] arr; // fields to know what to do
 MaxTask(int[] a, int l, int h) { … }
 protected Integer compute(){// return answer
 if(hi – lo <= SEQUENTIAL_CUTOFF) {
 int ans = a[lo]; // local var, not a field
 for(int i=lo; i < hi; i++)
 ans = Math.max(ans,a[i]);
 return ans;
 } else {
 MaxTask left = new MaxTask(arr,lo,(hi+lo)/2);
 MaxTask right= new MaxTask(arr,(hi+lo)/2,hi);
 left.fork(); // fork a thread and calls compute
 int rightAns = right.compute();//call compute directly
 int leftAns = left.join(); // get result from left
 return Math.max(leftAns, rightAns);
 }
 }
}
static final ForkJoinPool POOL = new ForkJoinPool();
int sum(int[] arr){
 MaxTask task = new MaxTask(arr,0,arr.length)
 return POOL.invoke(task);
 // invoke returns the value compute returns
}

Reduce
You’ll do similar problems in section.

The key is to describe:

1. How to compute the answer at the cut-off.

2. How to merge the results of two subarrays.

We say parallel code like this “reduces” the array

 We’re reducing the arrays to a single item

 Then combining with an associative operation.

 e.g. sum, max, leftmost, product, count, or, and, …

Doesn’t have to be a single number, could be an object.

07/27/2022

Even easier: Maps (Data Parallelism)

• A map operates on each element of a collection independently to
create a new collection of the same size

• No combining results
• For arrays, this is so trivial some hardware has direct support

• Canonical example: Vector addition
int[] vector_add(int[] arr1, int[] arr2){
 assert (arr1.length == arr2.length);
 result = new int[arr1.length];
 FORALL(i=0; i < arr1.length; i++) {
 result[i] = arr1[i] + arr2[i];
 }
 return result;
}

07/27/2022

Maps in ForkJoin Framework

• Even though there is no result-combining, it still helps
with load balancing to create many small tasks

• Maybe not for vector-add but for more compute-intensive
maps

• The forking is O(log n) whereas theoretically other approaches
to vector-add is O(1)

class VecAdd extends RecursiveAction {
 int lo; int hi; int[] res; int[] arr1; int[] arr2;
 VecAdd(int l,int h,int[] r,int[] a1,int[] a2){ … }
 protected void compute(){
 if(hi – lo <= SEQUENTIAL_CUTOFF) {
 for(int i=lo; i < hi; i++)
 res[i] = arr1[i] + arr2[i];
 } else {
 int mid = (hi+lo)/2;
 VecAdd left = new VecAdd(lo,mid,res,arr1,arr2);
 VecAdd right= new VecAdd(mid,hi,res,arr1,arr2);
 left.fork();
 right.compute();
 left.join();
 }
 }
}
static final ForkJoinPool POOL = new ForkJoinPool();
int[] add(int[] arr1, int[] arr2){
 assert (arr1.length == arr2.length);
 int[] ans = new int[arr1.length];
 POOL.invoke(new VecAdd(0,arr.length,ans,arr1,arr2);
 return ans;
}

07/27/2022

Maps and reductions

Maps and reductions: the “workhorses” of parallel programming
• By far the two most important and common patterns

• Two more-advanced patterns in next lecture

• Learn to recognize when an algorithm can be written in terms of maps and
reductions

• Use maps and reductions to describe (parallel) algorithms

• Programming them becomes “trivial” with a little practice
• Exactly like sequential for-loops seem second-nature

07/27/2022

Map vs reduce in ForkJoin framework

In our examples:

• Reduce:
• Parallel-sum extended RecursiveTask

• Result was returned from compute()

• Map:
• Class extended was RecursiveAction

• Nothing returned from compute()

• In the above code, the ‘answer’ array was passed in as a parameter

07/27/2022

	Slide 1: Lecture 18: Introduction to Multithreading & Fork-Join Parallelism
	Slide 2: Changing a major assumption
	Slide 3: A simplified view of history
	Slide 4: What to do with multiple processors?
	Slide 5: Parallelism vs Concurrency
	Slide 6: An analogy
	Slide 7: Parallelism Example
	Slide 8: Concurrency Example
	Slide 9: Shared memory with Threads
	Slide 10: Old Story: One call stack, one pc
	Slide 11: New Story: Shared memory with Threads
	Slide 12: Other models
	Slide 13: Our Needs
	Slide 14: Java basics
	Slide 15: Parallelism Idea
	Slide 16: First attempt, part 1
	Slide 17: First attempt, continued (wrong)
	Slide 18: Second attempt (still wrong)
	Slide 19: Third attempt (correct in spirit)
	Slide 20: A better approach
	Slide 21: A better approach
	Slide 22: A better approach
	Slide 23: A better approach
	Slide 24: Naive algorithm is poor
	Slide 25: A better idea: Divide and Conquer!
	Slide 26: Remember Mergesort?
	Slide 27: Code looks something like this
	Slide 28: Optimization: ~Half the threads!
	Slide 29: Creating Fewer Threads
	Slide 30: That library, finally
	Slide 31: Different terms, same basic idea
	Slide 32: Fork-Join Framework Version:
	Slide 33: Any Questions?
	Slide 34: Reduce
	Slide 35: Fork-Join Reduce:
	Slide 36: Reduce
	Slide 37: Even easier: Maps (Data Parallelism)
	Slide 38: Maps in ForkJoin Framework
	Slide 39: Maps and reductions
	Slide 40: Map vs reduce in ForkJoin framework

