
CSE 332: Data Structures & Parallelism

Lecture 17: Minimum Spanning Trees

Yafqa Khan
Summer 2025

Announcements

• EX07 due today
• EX08 due Friday
• EX09 released today
• Exam 2 information posted here:

– https://courses.cs.washington.edu/courses/cse332/25su/exa
ms/final.html

– Note: it will be hard to accommodate makeups; only four
days to grade

– If you can’t make proposed makeup dates (e.g.,
sickness/emergency), some options:

– Option 1: Exam 1 is worth 40% instead of 20% of overall
grade

– Option 2: Take the final exam in the next CSE 332 offering

5/26/2023 2

MSTs

It’s 2025! Your friend works at an internet company. They want to know
where to build internet cables to connect all cities to the Internet.

They know how much it would cost to lay internet cables, and they want
the cheapest way to make sure everyone can reach the server.

8/11/2023 3

↑

8/11/2023

Minimum Spanning Trees
Given an undirected graph G=(V,E), find a graph G’=(V, E’) such

that:
– E’ is a subset of E
– |E’| = |V| - 1
– G’ is connected

– is minimal

Applications:
• Example: Electrical wiring for a house or clock wires on a chip
• Example: A road network if you cared about asphalt cost rather

than travel time


 '),(
c
Evu
uv

G’ is a minimum
spanning tree.

4

-

-

O
w trees have
- & (v1 -1*
-I

-

-

5

j

m

nk

4 7

1
5

9

2

A

C

B

D

F
H

G

E

1
7

6

5
11

4

12

13

2
3

9

10

4

Find the MST
Student Activity

8/11/2023

5 min

S

· a tree that
connects all vertices

00 O · EW is minimal

O O O

⑧ O

O

- ⑧

6

Two Different Approaches

Prim’s Algorithm
Almost identical to Dijkstra’s

Kruskals’s Algorithm
Completely different!

8/11/2023

O E
- O &-⑧ 00 O N ⑧

⑳

7

Two Different Approaches

Prim’s Algorithm
Almost identical to Dijkstra’s

Kruskals’s Algorithm
Completely different!

One node, grow greedily Forest of MSTs,
Union them together.

(Need a new data structure for this)

8/11/2023

8

Prim’s algorithm

Idea: Grow a tree by picking a vertex from the unknown set that
has the smallest cost. Here cost = cost of the edge that
connects that vertex to the known set. Pick the vertex with the
smallest cost that connects “known” to “unknown.”

A node-based greedy algorithm
Builds MST by greedily adding nodes

G

v

known

8/11/2023

-

-

-

-

⑤

Prim’s Algorithm vs. Dijkstra’s

Recall:

Dijkstra picked the unknown vertex with smallest cost where
cost = distance to the source.

Prim’s pick the unknown vertex with smallest cost where
cost = distance from this vertex to the known set (in other words,
the cost of the smallest edge connecting this vertex to the known
set)

– Otherwise identical
– Compare to slides in Dijkstra lecture!

98/11/2023

-
-

& --
-

-

-

Prim’s Algorithm for MST

10

1. For each node v, set v.cost =  and v.known = false
2. Choose any node v. (this is like your “start” vertex in Dijkstra)

a) Mark v as known
b) For each edge (v,u) with weight w:

set u.cost=w and u.prev=v
3. While there are unknown nodes in the graph

a) Select the unknown node v with lowest cost
b) Mark v as known and add (v, v.prev) to output (the MST)
c) For each edge (v,u) with weight w, where u is unknown:
 if(w < u.cost) {
 u.cost = w;
 u.prev = v;
 }
 8/11/2023

- -
-

-

-

-

-
O-
-

-- -
↑

-

3
①
-

⑳-- -
⑧ 9

Prim’s Analysis

• Run-time
– Same as Dijkstra
– O(|E|log |V|) using a priority queue

198/11/2023

-

i heap

Kruskal’s MST Algorithm

Idea: Grow a forest out of edges that do not create a cycle. Pick an
edge with the smallest weight.

G=(V,E)

v

208/11/2023

a
set of tree

⑪r-

Example: Find MST using Kruskal’s

21

A B

C
D

F

E

G

2

1
2 5

1
1

1

2 6
5 3

10

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output:

Note: At each step, the union/find sets are the trees in the forest

8/11/2023

y

S d -

⑧WA
⑧·=W
⑨

O

-

Kruskal’s Algorithm for MST

An edge-based greedy algorithm
Builds MST by greedily adding edges

1. Initialize with
• empty MST
• all vertices marked unconnected
• all edges unmarked

2. While all vertices are not connected
a. Pick the lowest cost edge (u,v) and mark it
b. If u and v are not already connected, add (u,v) to the MST

and mark u and v as connected to each other

228/11/2023

-

-

-

-

-

-

-

-

-

Aside: Union-Find aka Disjoint Set ADT
• Union(x,y) – take the union of two sets named x and y

– Given sets: {3,5,7} , {4,2,8}, {9}, {1,6}
– Union(5,1)
 Result: {3,5,7,1,6}, {4,2,8}, {9},
To perform the union operation, we replace sets x and y by (x  y)

• Find(x) – return the name of the set containing x.
– Given sets: {3,5,7,1,6}, {4,2,8}, {9},
– Find(1) returns 5
– Find(4) returns 8

• We can do Union in constant time.
• We can get Find to be amortized constant time
 (worst case O(log n) for an individual Find operation).

238/11/2023

-
-

↳= ⑧ ⑧
-

E
-

↳ -

=
= add edge (A,B)

to MST

- find
-

-

Kruskal’s pseudo code
void Graph::kruskal(){
 int edgesAccepted = 0;
 DisjSet s(NUM_VERTICES);

 while (edgesAccepted < NUM_VERTICES – 1){
 e = smallest weight edge not deleted yet;
 // edge e = (u, v)
 uset = s.find(u);
 vset = s.find(v);
 if (uset != vset){
 edgesAccepted++;
 s.unionSets(uset, vset);
 }
 }
}

248/11/2023

-

-

-

-

--

-

-
O

-

-

-o

Kruskal’s pseudo code
void Graph::kruskal(){
 int edgesAccepted = 0;
 DisjSet s(NUM_VERTICES);

 while (edgesAccepted < NUM_VERTICES – 1){
 e = smallest weight edge not deleted yet;
 // edge e = (u, v)
 uset = s.find(u);
 vset = s.find(v);
 if (uset != vset){
 edgesAccepted++;
 s.unionSets(uset, vset);
 }
 }
}

2|E| finds

|V| unions

|E| heap ops

On heap of
edges

Deletemin =
log |E|

One for each
vertex in the

edge
Find = log |V|

O(|E|log|E|) = O(|E|log|V|)
b/c log |E| < log|V|2 = 2log|V|

Union = O(1)|E| log |E| + 2|E|log|V|+|V|

258/11/2023

IEI deleteMin
=>
-

I
↑

-

↳GG
=I

orlog (v)

Example: Find MST using Kruskal’s

26

A B

C
D

F

E

G

2

1
2 5

1
1

1

2 6
5 3

10

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output:

Note: At each step, the union/find sets are the trees in the forest

8/11/2023

Prim's
5min.

D
O

⑨·
A

2

