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Announcements

• EX06 due today
• EX07 due next Monday
• Exam 2 information posted here:

• https://courses.cs.washington.edu/courses/cse332/25su/exams/final.html
• Note: it will be hard to accommodate makeups; only four days to grade
• If you can’t make proposed makeup dates (e.g., sickness/emergency), some 

options:
• Option 1: Exam 1 is worth 40% instead of 20% of overall grade
• Option 2: Take the final exam in the next CSE 332 offering
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Exo8 released today

· Exam 1 grades, starts, solutions posted
· regrades requests open 8/2 ; closed 816

.



Today
• Graph Terminologies

• Paths vs Cycles
• Connected vs Unconnected
• Sparse vs dense

• Graph Datastructures
• Adjacency Matrix
• Adjacency List

• Graph Traversals
• DFS (Iterative + Recursive)
• BFS

• Graph Shortest Paths
• Dijkstra's 3
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Shortest Path: Applications

• Google Maps
• Network routing
• Driving directions
• Cheap flight tickets
• Critical paths in project management

(see textbook)
• etc.
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Shortest Path: Weighted Graphs
New Problem: What is the shortest path from src to specific nodes in 
a weighted graph? 

• Why BFS won’t work: Shortest path may not have the fewest edges
• Annoying when this happens with costs of flights

• We will assume there are no negative weights
• Problem is ill-defined if there are negative-cost cycles
• Some algorithms are wrong (e.g, Dijkstra's Algorithm) if edges can be negative
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Shortest Path: Dijkstra's Algorithm

• Initially, start node (A) has cost 0 and marked “visited”
• At each step:

• Pick cheapest visited vertex v not in the cloud
• Add v to the "cloud" of known vertices
• Visit and update distances for nodes with edges from v

• That’s it!  (Have to prove it produces correct answers) 8
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Dijkstras(Graph G, Node src):
 src.cost = 0 // all other costs uninitialized / implicitly “infinity”
 mark src as visited
 while (there are unknown nodes in G)
  v = unknown, visited node with lowest cost
  mark v as known
  for each edge (v, u) with weight w in G:
  potentialBest = v.cost + w // cost of potential best path 
                                          to u (through v)
   if (u is not visited):
   u.cost = potentialBest
   u.pred = v
   mark u as visited
  else if (potentialBest < u.cost):
   u.cost = potentialBest
   u.pred = v

Dijkstra's: The Algorithm
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Dijkstra's: Example
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Dijkstra's: Example
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Dijkstra's: Example
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Dijkstra's: Example
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Dijkstra's: Example
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Dijkstra's: Example
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Dijkstra's: Example
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Dijkstra's: Example
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Dijkstra's: Example
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Dijkstra's: Example
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Dijkstra's: A Greedy Algorithm

• Dijkstra’s algorithm
• For single-source shortest paths in a weighted graph (directed or undirected) 

with no negative-weight edges

• An example of a greedy algorithm: 
• At each step, irrevocably does what seems best at that step

• A locally optimal step, not necessarily globally optimal
• Once a vertex is known, it is not revisited

• Turns out to be globally optimal
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Dijkstra's: Correctness

1. Greedy Approach
• Prioritizes nodes closer to the starting point

2. Optimality of Selected Nodes
• When Dijkstra's visits a node, it has seen all possible paths to that node based 

on the visited nodes. Since it picks the smallest current cost, it is optimal.

3. Convergence
• Dijkstra's explores every nodes, so it never accidently picks e.g., the 2nd best 

path
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Dijkstra's: Unoptimal Efficiency
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Dijkstras(Graph G, Node src):

 src.cost = 0 // all other costs implicitly “infinity”

 mark src as visited

 while (there are unknown nodes in G)

  v = unknown, visited node with lowest cost

  mark v as known

  for each edge (v, u) with weight w in G:
  potentialBest = v.cost + w // cost of potential best path 
                                          to u (through v)

   if (u is not visited):
   u.cost = potentialBest
   u.pred = v
   mark u as visited
  else if (potentialBest < u.cost):
   u.cost = potentialBest
   u.pred = v
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Dijkstra’s: Optimal Efficiency
Dijkstras(Graph G, Node src):

 src.cost = 0 // all other costs implicitly “infinity”

 mark src as visited

 heap = {src}

 while (heap is not empty)

  v = heap.deleteMin()

  mark v as known

  for each edge (v, u) with weight w in G:
  potentialBest = v.cost + w // cost of potential best path 
                                             to u (through v)

   if (u is not visited):
   u.cost = potentialBest
   u.pred = v
   mark u as visited
   heap.insert(u)
  else if (potentialBest < u.cost):
   u.cost = potentialBest
   u.pred = v
   heap.changePriority(u, potentialBest)
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Heap: Other operations

• decreaseKey(idx, Δ) or increaseKey(idx, Δ) 
1. arr[idx] -= Δ      or  arr[idx] += Δ  
2. percolateUp()      or  percolateDown()
Worst Case Θ log 𝑛

• delete(idx)
1. decreaseKey(idx, ∞)
2. deleteMin()
Worst Case Θ log 𝑛
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Heap: Note on decrease/increaseKey

• MORE COMMONLY CALLED changePriority(key, prio)
1. Uses a map to go from key -> idx
2. arr[idx] = prio
3. percolateUp() or percolateDown()

(Same as decrease/increaseKey)
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Any Questions?
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