
Lecture 16:
Graphs Shortest Paths

CSE 332: Data Structures & Parallelism
Yafqa Khan

Summer 2025

1

Announcements

• EX06 due today
• EX07 due next Monday
• Exam 2 information posted here:

• https://courses.cs.washington.edu/courses/cse332/25su/exams/final.html
• Note: it will be hard to accommodate makeups; only four days to grade
• If you can’t make proposed makeup dates (e.g., sickness/emergency), some

options:
• Option 1: Exam 1 is worth 40% instead of 20% of overall grade
• Option 2: Take the final exam in the next CSE 332 offering

2

Exo8 released today

· Exam 1 grades, starts, solutions posted
· regrades requests open 8/2 ; closed 816

.

Today
• Graph Terminologies

• Paths vs Cycles
• Connected vs Unconnected
• Sparse vs dense

• Graph Datastructures
• Adjacency Matrix
• Adjacency List

• Graph Traversals
• DFS (Iterative + Recursive)
• BFS

• Graph Shortest Paths
• Dijkstra's 3

Today

• Graph Traversals
• DFS (Iterative + Recursive)
• BFS

• Graph Shortest Paths
• Dijkstra's

4

Today

• Graph Traversals
• DFS (Iterative + Recursive)
• BFS

• Graph Shortest Paths
• Dijkstra's

5

Shortest Path: Applications

• Google Maps
• Network routing
• Driving directions
• Cheap flight tickets
• Critical paths in project management

(see textbook)
• etc.

6

-

Shortest Path: Weighted Graphs
New Problem: What is the shortest path from src to specific nodes in
a weighted graph?

• Why BFS won’t work: Shortest path may not have the fewest edges
• Annoying when this happens with costs of flights

• We will assume there are no negative weights
• Problem is ill-defined if there are negative-cost cycles
• Some algorithms are wrong (e.g, Dijkstra's Algorithm) if edges can be negative

7

500

100
100 100

100

7

10 5

-11

- -

-

S

-

1 so

of
- - 2

- of
-

Shortest Path: Dijkstra's Algorithm

• Initially, start node (A) has cost 0 and marked “visited”
• At each step:

• Pick cheapest visited vertex v not in the cloud
• Add v to the "cloud" of known vertices
• Visit and update distances for nodes with edges from v

• That’s it! (Have to prove it produces correct answers) 8

A B

D
C

F H

E

G

0 2 4 ∞

4

1

12

∞

2 2 3

110 2
3

111

7

1
9

2

4 5

"Visited" vertices

O oJo o

- -

G

Dijkstras(Graph G, Node src):
 src.cost = 0 // all other costs uninitialized / implicitly “infinity”
 mark src as visited
 while (there are unknown nodes in G)
 v = unknown, visited node with lowest cost
 mark v as known
 for each edge (v, u) with weight w in G:
 potentialBest = v.cost + w // cost of potential best path
 to u (through v)
 if (u is not visited):
 u.cost = potentialBest
 u.pred = v
 mark u as visited
 else if (potentialBest < u.cost):
 u.cost = potentialBest
 u.pred = v

Dijkstra's: The Algorithm

9

I
- -

-

--

-

-

-

-
-

T
-

&-
I

Dijkstra's: Example

10

A B

D
C

F H

E

G

0 2 2 3

110 2
3

111

7

1
9

2

4 5
vertex known? cost pred

A

B

C

D

E

F

G

H

Order Added to Visit Set:

O

#

Dijkstra's: Example

11

A B

D
C

F H

E

G

0 2 2 3

110 2
3

111

7

1
9

2

4 5
vertex known? cost pred

A 0

B ∞

C ∞

D ∞

E ∞

F ∞

G ∞

H ∞

Order Added to Visit Set:

⑧

g

Dijkstra's: Example

12

vertex known? cost pred

A Yes 0

B 2 A

C 1 A

D 4 A

E ∞

F ∞

G ∞

H ∞

Order Added to Visit Set:
A

A B

D
C

F H

E

G

0 2

4

1

2 2 3

110 2
3

111

7

1
9
2

4 5⑰ OG
O ⑳

known
&

Dijkstra's: Example

13

vertex known? cost pred

A Yes 0

B 2 A

C Yes 1 A

D 4 A

E 12 C

F ∞

G ∞

H ∞

Order Added to Visit Set:
A C

A B

D
C

F H

E

G

0 2

4

1

12

2 2 3

110 2
3

111

7

1
9
2

4 5& O

& O
known

-

Dijkstra's: Example

14

vertex known? cost pred

A Yes 0

B Yes 2 A

C Yes 1 A

D 4 A

E 12 C

F 4 B

G ∞

H ∞

Order Added to Visit Set:
A C B

A B

D
C

F H

E

G

0 2 4

4

1

12

2 2 3

110 2
3

111

7

1
9
2

4 5%
O O

known
>

Dijkstra's: Example

15

vertex known? cost pred

A Yes 0

B Yes 2 A

C Yes 1 A

D Yes 4 A

E 12 C

F 4 B

G ∞

H ∞

Order Added to Visit Set:
A C B D

A B

D
C

F H

E

G

0 2 4

4

1

12

2 2 3

110 2
3

111

7

1
9
2

4 5

O

-

known

Dijkstra's: Example

16

vertex known? cost pred

A Yes 0

B Yes 2 A

C Yes 1 A

D Yes 4 A

E 12 C

F Yes 4 B

G ∞

H 7 F

Order Added to Visit Set:
A C B D F

A B

D
C

F H

E

G

0 2 4 7

4

1

12

2 2 3

110 2
3

111

7

1
9
2

4 5

⑧

known
C

00

Dijkstra's: Example

17

vertex known? cost pred

A Yes 0

B Yes 2 A

C Yes 1 A

D Yes 4 A

E 12 C

F Yes 4 B

G 8 H

H Yes 7 F

Order Added to Visit Set:
A C B D F H

A B

D
C

F H

E

G

0 2 4 7

4

1

12

8

2 2 3

110 2
3

111

7

1
9
2

4 5 O

Dijkstra's: Example

18

vertex known? cost pred

A Yes 0

B Yes 2 A

C Yes 1 A

D Yes 4 A

E 12 11 C G

F Yes 4 B

G Yes 8 H

H Yes 7 F

Order Added to Visit Set:
A C B D F H G

A B

D
C

F H

E

G

0 2 4 7

4

1

12

8

2 2 3

110 2
3

111

7

1
9
2

4 5

80 .

-11

0 0

Dijkstra's: Example

19

vertex known? cost pred

A Yes 0

B Yes 2 A

C Yes 1 A

D Yes 4 A

E Yes 12 11 C G

F Yes 4 B

G Yes 8 H

H Yes 7 F

Order Added to Visit Set:
A C B D F H G E

A B

D
C

F H

E

G

0 2 4 7

4

1

11

8

2 2 3

110 2
3

111

7

1
9
2

4 5

⑦-

Dijkstra's: A Greedy Algorithm

• Dijkstra’s algorithm
• For single-source shortest paths in a weighted graph (directed or undirected)

with no negative-weight edges

• An example of a greedy algorithm:
• At each step, irrevocably does what seems best at that step

• A locally optimal step, not necessarily globally optimal
• Once a vertex is known, it is not revisited

• Turns out to be globally optimal

20

-

- EX08

-

known

-
- ⑦
-

Dijkstra's: Correctness

1. Greedy Approach
• Prioritizes nodes closer to the starting point

2. Optimality of Selected Nodes
• When Dijkstra's visits a node, it has seen all possible paths to that node based

on the visited nodes. Since it picks the smallest current cost, it is optimal.

3. Convergence
• Dijkstra's explores every nodes, so it never accidently picks e.g., the 2nd best

path

21

The Visited
Cloud

v Next shortest path from
inside the visited cloud

w

Better path to
v? No!

Source⑳
visited

Dijkstra's: Unoptimal Efficiency

22

Dijkstras(Graph G, Node src):

 src.cost = 0 // all other costs implicitly “infinity”

 mark src as visited

 while (there are unknown nodes in G)

 v = unknown, visited node with lowest cost

 mark v as known

 for each edge (v, u) with weight w in G:
 potentialBest = v.cost + w // cost of potential best path
 to u (through v)

 if (u is not visited):
 u.cost = potentialBest
 u.pred = v
 mark u as visited
 else if (potentialBest < u.cost):
 u.cost = potentialBest
 u.pred = v

𝒪 1

𝒪 𝑉 2

𝒪 𝐸

𝒪 𝑉 2 + 𝐸

-- o(lul)
③

- O-
-

3
-

& ⑯
&

Dijkstra’s: Optimal Efficiency
Dijkstras(Graph G, Node src):

 src.cost = 0 // all other costs implicitly “infinity”

 mark src as visited

 heap = {src}

 while (heap is not empty)

 v = heap.deleteMin()

 mark v as known

 for each edge (v, u) with weight w in G:
 potentialBest = v.cost + w // cost of potential best path
 to u (through v)

 if (u is not visited):
 u.cost = potentialBest
 u.pred = v
 mark u as visited
 heap.insert(u)
 else if (potentialBest < u.cost):
 u.cost = potentialBest
 u.pred = v
 heap.changePriority(u, potentialBest)

𝒪 1

𝒪 𝑉 log(|𝑉|)

𝒪 𝐸 log(|𝑉|)

𝒪 𝑉 log 𝑉 + 𝐸 log 𝑉

/ visited not known
-
- - f
-

-

↓
-

t

-> Hav)Z
L E S ->

O or)
-

--

Heap: Other operations

• decreaseKey(idx, Δ) or increaseKey(idx, Δ)
1. arr[idx] -= Δ or arr[idx] += Δ
2. percolateUp() or percolateDown()
Worst Case Θ log 𝑛

• delete(idx)
1. decreaseKey(idx, ∞)
2. deleteMin()
Worst Case Θ log 𝑛

24

Recap
of heap operations

-00-

-

E
-
-

-

Heap: Note on decrease/increaseKey

• MORE COMMONLY CALLED changePriority(key, prio)
1. Uses a map to go from key -> idx
2. arr[idx] = prio
3. percolateUp() or percolateDown()

(Same as decrease/increaseKey)

25

-

-

- O-

-- EX2

Any Questions?

26

