Lecture 16:
Graphs Shortest Paths

CSE 332: Data Structures & Parallelism
Yafga Khan
Summer 2025



Announcements

* EXO6 due today ]LD 2
* EXO7 due next Monday) =X 0D release & %L

 Exam 2 information posted here:
e https://courses.cs.washington.edu/courses/cse332/25su/exams/final.html
* Note: it will be hard to accommodate makeups; only four days to grade

* |f you can’t make proposed makeup dates (e.g., sickness/emergency), some
options:

e Option 1: Exam 1 is worth 40% instead of 20% of overall grade

* Option 2: Take the final exam in the next CSE 332 offering

e T roum ] 7%@5) 5%5) solatconas /9056@6
’ fé?(de&S r%VLKS% Oﬂ?l/) g/z j QZ@SQ@( B/é .




Today

* Graph Terminologies
e Paths vs Cycles
* Connected vs Unconnected
* Sparse vs dense

* Graph Datastructures
* Adjacency Matrix
e Adjacency List

* Graph Traversals

* DFS (lterative + Recursive)
* BFS

* Graph Shortest Paths
 Dijkstra's



Today

e Graph Traversals

e DFS (Iterative + Recursive)
* BFS

* Graph Shortest Paths
* Dijkstra's



Today

* Graph Traversals

e DFS (Iterative + Recursive)
* BFS

* Graph Shortest Paths
* Dijkstra's



Shortest Path: Applications

* Google Maps
\,

* Network routing

* Driving directions

* Cheap flight tickets

* Critical paths in project management
(see textbook)

* etc.



Shortest Path: Weighted Graphs

New Problem: What is the shortest path from srcto specific nodes in
a weighted graph?

:Mm : /@\D

* Why BFS won’t work: Shortest path may not have the fewest edges
* Annoying when this happens with costs of flights a\/)g

* We will assume there are no negative weights f -
* Problem is ill-defined if there arm _4?\ o |

* Some algorithms are wrong (e.g, Dijkstra's Algorithm) if edges can be negative




Shortest Path: Dijkstra's Algorithm

V(s ted vey hces

e Initially, start node (2) has cost 0 and marked “visited”

* At each step:
* Pick cheapest visited vertex v not in the @
e Add v to the "cloud" of known vertices
* Visit and update distances for nodes with edges from v

e That’s it! (Have to prove it produces correct answers)



Dijkstra's: The Algorithm

Dijkstras (Graph G, Node src) :

|src.cost = 0 // all other costs uninitialized / implicitly “infinity”
mark src as visited

while (there are unknown nodes 1in G)
v = unknown, visited node with lowest cost
mark v as known
for each edge (v, u) with weight w in G:
potentialBest = v.cost + w // cost of potential best path
: o to u (through v)

1f (u 1s not wvisited) :
Su.cost = potentialBest
u.pred = v
mark u as visited

else if (potentialBest < u.cost):
u.cost = potentialBes ’
\¥.pred = Vv




Dijkstra's: Example

_ I ——
vertex | known? cost pred
A
B
C
Order Added to Visit Set: E
=
G
L ]

10




Dijkstra's: Example

vertex | known? cost pred

ol

Order Added to Visit Set:

_/—/\
\

T Ol Mmool m

81888 8]8

\ >/




Dijkstra's: Example

Order Added to Visit Set:

vertex | known? cost pred
A |/ Yes) 0
2)

g8s

T Ol Mmool m

12




Dijkstra's: Example

(wowv\
Order Added to Vl/lt Set:

AC

vertex | known? cost pred
A Yes 0
B 2 A
C | (Yes) 1 A
D 4 A
E 12 C
F 00
G 0o
H 00

13




Dijkstra's: Example

Order Added to Visit Set:

ACB

vertex | known? cost pred
A Yes 0
B Yes 2 A
C Yes 1 A
D 4 A
E 12 C
F 4 B
G 0o
H 00

14




Dijkstra's: Example

vertex | known? cost pred

A Yes 0

Yes 2

Yes 1

\( N0 N
. Yes 4
Order Added to Visit Set:
ACBD /

WO > > >

T Ol Mmool m
N




Dijkstra's: Example

Order Added to Visit Set:

ACBD@

vertex | known? cost pred
A Yes 0
B Yes 2 A
C Yes 1 A
D Yes £ A
E 12 C
F Yes £ B
G o e
H (7) (F D




Dijkstra's: Example

Order Added to Visit Set:

ACBDFH

vertex | known? cost pred

A Yes 0

B Yes 2 A
C Yes 1 A
D Yes £ A
E 12 C
F Yes £ B
G 8 H
H Yes 7 F

17




Dijkstra's: Example

Order Added to Visit Set:

ACBDFHG

vertex | known? cost pred

A Yes 0

B Yes 2 A

C Yes 1 A

D Yes £ A

E 12/41) 6G)
F Yes £ B

G Yes 8 H

H Yes 7 F

18




Dijkstra's: Example

<nowl\

Order Added to Wisit Set:

ACBDFHGE/

PE>E > i o > L

—_




Dijkstra’s: A Greedy Algorithm

* Dijkstra’s algorithm

* For single-source shortest paths in a weighted graph (directed or undirected)
with no negative-weight edges E | ,
K O g

* An example of a greedy algorithm:
* At each step, irrevocably does what seemw

* A locally optimal step, not necessarily globally optimal KO o %
* Once a vertex is known, it is not revisited @

* Turns out to be globally optimal

—_—




Dijkstra's: Correctness

1. Greedy Approach

* Prioritizes nodes closer to the starting point

2. Optimality of Selected Nodes
* When Dijkstra's visits a node, it has seen all } ble-paths to that node ba

on the visited nodes. Since it picks the smaIIe Irrent cost, it is optimal.~

3. Convergence Ul e 4
* Dijkstra's explores every nodes, so it never accidently picks e.g., the 2nd best

path

21



Dijkstra's: Unoptimal Efficiency

Dijkstras (Graph G, Node src):

src.cost = 0 // all other costs implicitly “infinity”

mark src as visited

while (there are unknown nodes in G)

v = unknown, visited node with lowest cost C?(W\/‘\>

mark v as known

' for each edge (v, u) with weight w in G:

potentialBest = v.cost + w // cost of potential best path
to u (through wv)

if (u 1is not visited):
u.cost = potentialB
u.pred = v

mark u as visited
else 1f (potentialBest < u.cost):
u.cost = potentialBest
u.pred = v




Dijkstra’s: Optimal Efficiency

Dijkstras (Graph G, Node src):

src.cost = 0 // all other costs implicitly “infinity”

0(1)

mark src as visited

heap = {src} /7/V' Jﬁ) Vh04” )4 No W' \
K
while (heap is not empty /F

el e O F TP
v = heap.deleteMin () } o(|V]log(lV]))
mark v as known — | 7 -
for each edge (v, u) with weight w in Géjéz_l

potentialBest = v.cost + w // cost of potential best path
to u (through v)

(u is not wvisited) : l

u.cost = potentialBest
O(Ellog(IV 1))

u.pred = v

mark u as visited /(9 ‘ /l/
heap.insert(uv) —— - \:ézf::>
else if (potentialBest < u.cost):

u.cost = potentialBest é;fé

u.pr%imgﬂégggzgiji;i;> potentialBest) © Mﬁk > £§520{j>
o(VloglV] + |E| loglV])




P()cm\; o{ Véﬂp @W@rﬁf’avg
Heap: Other operations

* decreaseKey (@, or increaseKey (idx, A)
mx] -= A or arr[id;; += A
2. percolateUp () or percolateDown ()
Worst Case O(logn)

e delete (1dx)
1. decreaseKey (1dx, (o0
2. dele/teMi ()

Worst Case O(logn)

24



Heap: Note on decrease/increaseKey

-—

* MORE COMMONLY CALLED changePriority (key, @

1. Uses amaptogo from key ->idx
2. arr[1dx] = prio

3. percolateUp () orpercolateDown ()
= A<

_—
/

(Same as decrease/increaseKey)



Any Questions?



