Lecture 15: Graph Traversals

CSE 332: Data Structures & Parallelism
Yafga Khan
Summer 2025



Announcements

e EXO06 due Friday
 EXO7 released today

 Exam 2 information posted here:
* https://courses.cs.washington.edu/courses/cse332/25su/exams/final.html
Note: it will be hard to accommodate makeups; only four days to grade

If you can’t make proposed makeup dates (e.g., sickness/emergency), some
options:

Option 1: Exam 1 is worth 40% instead of 20% of overall grade
Option 2: Take the final exam in the next CSE 332 offering




Today

* Graph Terminologies
e Paths vs Cycles
e Connected vs Unconnected
e Sparse vs dense

* Graph Data structures
* Adjacency Matrix
e Adjacency List

* Graph Traversals

* DFS (lterative + Recursive)
* BFS

e Graph Shortest Paths
e Dijkstra's



Today

* Graph Terminologies
e Paths vs Cycles
* Connected vs Unconnected
* Sparse vs dense

* Graph Data structures
* Adjacency Matrix
e Adjacency List

* Graph Traversals

* DFS (lterative + Recursive)
* BFS

e Graph Shortest Paths
e Dijkstra's



Today

* Graph Terminologies
e Paths vs Cycles
* Connected vs Unconnected
* Sparse vs dense

* Graph Data structures
* Adjacency Matrix
e Adjacency List

* Graph Traversals

* DFS (lterative + Recursive)
* BFS

e Graph Shortest Paths
e Dijkstra's



Graphs: Algorithms

Okay, we can represent graphs

Now let’s implement some useful and non-trivial algorithms
. Graph Traversals: Depth-first graph search (DFS) & Breadth-first graph

search (BFS) T

* Shortest paths: Find the shortest or lowest-cost path from x to y
- Related: Determine if there even is such a path o




Graphs: Traversals

Problem: In a graph G, find all nodes from a node src

\

* i.e., Is there a path from src to specific nodes?

Useful for doing something (processing) at a node (e.g., print the node)
™

Basic Idea:
» Keep following nodes

* "mark" nodes after visiting them such that it processes each node
once T




Traversal: Abstract "Pseudocode”

traverseGraph (Node src) { / ‘
= UL W
Set pending = new Datai;;uéfﬁié(); SE@QQ\//Z% & M

pending.add(src)
MEEE BEE @5 voBlied O &?ié@é{
while (pending 1s not empty) 79

v = pending.remgszL<T///r
for each node g_égigggnL_LQ_ﬂg// i.e., all of v's neighbour (s)

1f(u 1s not marked) { /
mark u = 000 - VARY M

pemcbing . SCd (1)




Traversal: Algorithms

* Depth-First Search

e Uses a Stack
* (Recursively) Explore far away from src first O

* Breadth-First Search

e Uses a Queue
* Explore everything near src first




Traversal: Iterative DFS (Less common)

TterativeDFS (Node src) {
s = new Stack()
> sS.push (src)
mark src as visited
while (s 1s not empty) {
v = s.pop() // and "process"
for each node u adjacent to v
1f(u 1s not marked)
mark u as visited

Order Processed: s.push (u)

AC 4&%ED}}

10



Traversal: Iterative DFS (Less common) (Soln.)

~ IterativeDFS (Node src) {
s = new Stack()
sS.push (src)
mark src as visited
while (s 1s not empty) {
v = s.pop() // and "process"
for each node u adjacent to v
1f(u 1s not marked)
mark u as visited
Order Processed: s .push (1)

A, B,D,ECFG,H o

-
etc.




Traversal: Recursive DFS (More common)

RecursiveDFS (Node v) {
mark v as visited // and "process"

for each node u adjacent to v
1f u 1s not marked

RecursiveDFS (u)

—

—

Order Processed:
Same as before!

AB D, B LY 6T



Cycle Detection

RecursiveDFS (Node v) {
mark v as visited // and "process"
. %
- for each node u adjacent to v
1f u 1s not marked

RecursiveDFS (u)

* Intuition: store the “
” while doing DFS

* If you see a neighbor (‘u’ in
pseudocode) that’s already in the
current path, then cycle




Use Iterative DFS for Exams |

Recursive DFS recommended for EX7



Any Questions?



Traversal: BFS (Soln.)

BFS (Node src) {
S = new Queue ()
S.enqueue (src)
mark src as visited
while (s 1s not empty) {
v = s.dequeue () // and "process"
for each node u adjacent to v
1f(u 1s not marked)
mark u as visited
Order Processed: s . enqueue (1)

A%c E,5 G I/

e///,_i__—)

16



Traversal: BFS (Soln.)

BFS (Node src) {

S = new Queue ()

S.enqueue (src)

mark src as visited

while (s 1s not empty) {
v = s.dequeue () // and "process"
for each node u adjacent to v
1f(u 1s not marked)

mark u as visited

Order Processed: s . enqueue (1)
A,B,C D EFG,H }
etc., any level-order traversal

17



Traversal: DFSvs BFS

. Depth First Search (DFS):

. @Generally, DFS uses less memory compared to BFS as it only needs
to store the nodes along the current branch.

* Applications: Topological Sorting, Cycle Detection, etc.

e

e Breadth-First Search (BFS):

* Memory: BFS tends to use more memory than DFS, as it needs to store all
nodes at the current level before moving to the next level.

e Applications: Shortest Paths

¢ 3rd Option:ms (IDDFS) A=\
Use DFS with increasing depth limits 0{ _

» Good memory + finds shortest path

oA = 3



Traversal: Saving the Path

* Old Problem: Is there a path from src to specific nodes?

 —

* New Problem: What is the path from src to specific nodes?

| \/
Q: How do we output the actual path? Q/ ‘degg (V] =&
A: | Q B

 When marking, store the predecessor (previous) node along the path
\

* When you're done search, follow the pred backwards to where you
started (and then reverse it to get the path)

—_—




BFS with Path Saving

ITterativeDFS (Node src) {
S = new Queue ()
S.enqueue (src)
src.pred = null // same as marking src as visited
while (s 1s not empty) {
(i:i\f.dequeue() // and "procgiéii>
for each node u adjacent to v
1f(u 1s not marked)

u.pred = Xb[/ previous node of u in the path is v

s .enqueue (u)



Traversal: BFS Shortest Path Example
Pré@@ .

SO A N uAAL

What is the shortest path from Seattle to Austin?

Seo. =2 (i —> Dollos 9/4%5

\
SP&

Seatt

Salt Lake City

San Francisco



Traversal: BFS Shortest Path Example (Soln.)

What
rSeatt

is the shortest path from Seattle to Austin?

e -> Chicago -> Dallas -> Austin

Seatt
Seatt

e -> Salt Lake City -> Dallas -> Austin
e -> San Francisco -> Dallas -> Austin

Chicago
Seattle

Salt Lake City

Austin

San Francisco

Dallas

22



Any Questions?



H@w 1o uvse BFS o ﬁ&@










