
Lecture 15: Graph Traversals

CSE 332: Data Structures & Parallelism
Yafqa Khan

Summer 2025

1

Announcements

• EX06 due Friday
• EX07 released today
• Exam 2 information posted here:

• https://courses.cs.washington.edu/courses/cse332/25su/exams/final.html
• Note: it will be hard to accommodate makeups; only four days to grade
• If you can’t make proposed makeup dates (e.g., sickness/emergency), some

options:
• Option 1: Exam 1 is worth 40% instead of 20% of overall grade
• Option 2: Take the final exam in the next CSE 332 offering

2

-

-

-

- -

-

-

-

Today
• Graph Terminologies

• Paths vs Cycles
• Connected vs Unconnected
• Sparse vs dense

• Graph Data structures
• Adjacency Matrix
• Adjacency List

• Graph Traversals
• DFS (Iterative + Recursive)
• BFS

• Graph Shortest Paths
• Dijkstra's 3

Today
• Graph Terminologies

• Paths vs Cycles
• Connected vs Unconnected
• Sparse vs dense

• Graph Data structures
• Adjacency Matrix
• Adjacency List

• Graph Traversals
• DFS (Iterative + Recursive)
• BFS

• Graph Shortest Paths
• Dijkstra's 4

Today
• Graph Terminologies

• Paths vs Cycles
• Connected vs Unconnected
• Sparse vs dense

• Graph Data structures
• Adjacency Matrix
• Adjacency List

• Graph Traversals
• DFS (Iterative + Recursive)
• BFS

• Graph Shortest Paths
• Dijkstra's 5

Graphs: Algorithms

Okay, we can represent graphs

Now let’s implement some useful and non-trivial algorithms
• Graph Traversals: Depth-first graph search (DFS) & Breadth-first graph

search (BFS)
• Shortest paths: Find the shortest or lowest-cost path from x to y

• Related: Determine if there even is such a path

6

z

-

- -

-

- --

Graphs: Traversals

Problem: In a graph G, find all nodes from a node src
• i.e., Is there a path from src to specific nodes?
Useful for doing something (processing) at a node (e.g., print the node)

Basic Idea:
• Keep following nodes
• "mark" nodes after visiting them such that it processes each node

once

7

- -

-

-

-

-

-

-

Traversal: Abstract "Pseudocode"

8

traverseGraph(Node src) {
 Set pending = new DataStructure();
 pending.add(src)
 mark src as visited
 while(pending is not empty) {
 v = pending.remove()
 for each node u adjacent to v // i.e., all of v's neighbour(s)
 if(u is not marked) {
 mark u
 pending.add(u)
 }
 }
}

-

- stack/queue
- -
=
-

- processed
-S
-

-

-

-- visited
-

Traversal: Algorithms

• Depth-First Search
• Uses a Stack
• (Recursively) Explore far away from src first

• Breadth-First Search
• Uses a Queue
• Explore everything near src first

9

1 O

= -
-
-

Traversal: Iterative DFS (Less common)

Order Processed:

10

A

B

D E

C

F

HG

IterativeDFS(Node src) {
 s = new Stack()
 s.push(src)
 mark src as visited
 while(s is not empty) {
 v = s.pop() // and "process"
 for each node u adjacent to v
 if(u is not marked)
 mark u as visited
 s.push(u)
 }
 }
}

-

E
->

↓

=> -

, ,
BE ,

D I
-

Traversal: Iterative DFS (Less common) (Soln.)

Order Processed:
A, C, F, H, G, B, E, D
A, B, D, E, C, F, G, H
etc.

11

A

B

D E

C

F

HG

IterativeDFS(Node src) {
 s = new Stack()
 s.push(src)
 mark src as visited
 while(s is not empty) {
 v = s.pop() // and "process"
 for each node u adjacent to v
 if(u is not marked)
 mark u as visited
 s.push(u)
 }
 }
}= I
-

Traversal: Recursive DFS (More common)

12

A

B

D E

C

F

HG

RecursiveDFS(Node v) {
 mark v as visited // and "process"
 for each node u adjacent to v
 if u is not marked
 RecursiveDFS(u)
}

Order Processed:
Same as before!

-T-*
-

-

A
,
B
,
D
,
E
,
C
,
F
,
G

,
H

Cycle Detection

13

A

B

D E

C

F

HG

RecursiveDFS(Node v) {
 mark v as visited // and "process"
 for each node u adjacent to v
 if u is not marked
 RecursiveDFS(u)
}

• Intuition: store the “current
path” while doing DFS

• If you see a neighbor (‘u’ in
pseudocode) that’s already in the
current path, then cycle

-

Y

-

-

-
-

Use Iterative DFS for Exams
Recursive DFS recommended for EX7

14

f
-

r

Any Questions?

15

Traversal: BFS (Soln.)

16

A

B

D E

C

F

HG

BFS(Node src) {
 s = new Queue()
 s.enqueue(src)
 mark src as visited
 while(s is not empty) {
 v = s.dequeue() // and "process"
 for each node u adjacent to v
 if(u is not marked)
 mark u as visited
 s.enqueue(u)
 }
 }
}

Order Processed:

-

Chr

E
O

I
-

O

F, Get

Traversal: BFS (Soln.)

17

A

B

D E

C

F

HG

BFS(Node src) {
 s = new Queue()
 s.enqueue(src)
 mark src as visited
 while(s is not empty) {
 v = s.dequeue() // and "process"
 for each node u adjacent to v
 if(u is not marked)
 mark u as visited
 s.enqueue(u)
 }
 }
}

Order Processed:
A, B, C, D, E, F, G, H
etc., any level-order traversal

Traversal: DFS vs BFS

• Depth-First Search (DFS):
• Memory: Generally, DFS uses less memory compared to BFS as it only needs

to store the nodes along the current branch.
• Applications: Topological Sorting, Cycle Detection, etc.

• Breadth-First Search (BFS):
• Memory: BFS tends to use more memory than DFS, as it needs to store all

nodes at the current level before moving to the next level.
• Applications: Shortest Paths

• 3rd Option: Iterative Deep DFS (IDDFS)
• Use DFS with increasing depth limits
• Good memory + finds shortest path

18

⑳

-&S
O--
-

*

-

-

- d = 1

7- d = 2
-

d = 3 I

Traversal: Saving the Path

• Old Problem: Is there a path from src to specific nodes?
• New Problem: What is the path from src to specific nodes?

Q: How do we output the actual path?
A:
• When marking, store the predecessor (previous) node along the path
• When you're done search, follow the pred backwards to where you

started (and then reverse it to get the path)

19

-

- -

V

&>
⑤

- O
->

pred] = u>
-

--

-

-

BFS with Path Saving

20

IterativeDFS(Node src) {
 s = new Queue()
 s.enqueue(src)
 src.pred = null // same as marking src as visited
 while(s is not empty) {
 v = s.dequeue() // and "process"
 for each node u adjacent to v
 if(u is not marked)
 u.pred = v // previous node of u in the path is v
 s.enqueue(u)
 }
 }
}

- -

&

-

-
=>

Traversal: BFS Shortest Path Example

What is the shortest path from Seattle to Austin?

21

Seattle

San Francisco
Dallas

Salt Lake City

Chicago

Austin

- pred :

Schi-> Dallas -> Aus sea nuch

O

- =O

-

-

Traversal: BFS Shortest Path Example (Soln.)

What is the shortest path from Seattle to Austin?
Seattle -> Chicago -> Dallas -> Austin
Seattle -> Salt Lake City -> Dallas -> Austin
Seattle -> San Francisco -> Dallas -> Austin

22

Seattle

San Francisco
Dallas

Salt Lake City

Chicago

Austin

=

Any Questions?

23

How to use BFS to find

shortest paths in a weighted

graph ? (Assume weights are

E2, 3. ... 3)
E

·9 % 00 -0500Y

5 min
00 T -> -

gO B 80
-

g &- - ↓

* &
⑧ - 12 O

X
O
& ↑

5 -2 2

2 O T

O Z

- I -OBellman-Ford
D⑳so g2- 4

↑ O
⑳--⑪

O

o

