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Announcements

• EX06 due Friday
• EX07 released today
• Exam 2 information posted here:

• https://courses.cs.washington.edu/courses/cse332/25su/exams/final.html
• Note: it will be hard to accommodate makeups; only four days to grade
• If you can’t make proposed makeup dates (e.g., sickness/emergency), some 

options:
• Option 1: Exam 1 is worth 40% instead of 20% of overall grade
• Option 2: Take the final exam in the next CSE 332 offering
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Today
• Graph Terminologies

• Paths vs Cycles
• Connected vs Unconnected
• Sparse vs dense

• Graph Data structures
• Adjacency Matrix
• Adjacency List

• Graph Traversals
• DFS (Iterative + Recursive)
• BFS

• Graph Shortest Paths
• Dijkstra's 3
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Graphs: Algorithms

Okay, we can represent graphs

Now let’s implement some useful and non-trivial algorithms
• Graph Traversals: Depth-first graph search (DFS) & Breadth-first graph 

search (BFS)
• Shortest paths: Find the shortest or lowest-cost path from x to y

• Related: Determine if there even is such a path
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Graphs: Traversals

Problem: In a graph G, find all nodes from a node src
• i.e., Is there a path from src to specific nodes?
Useful for doing something (processing) at a node (e.g., print the node)

Basic Idea:
• Keep following nodes
• "mark" nodes after visiting them such that it processes each node 

once
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Traversal: Abstract "Pseudocode"
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traverseGraph(Node src) {
 Set pending = new DataStructure();
 pending.add(src)
 mark src as visited
 while(pending is not empty) {
  v = pending.remove()
  for each node u adjacent to v // i.e., all of v's neighbour(s)
   if(u is not marked) {
    mark u
    pending.add(u)
   }
 }
}
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Traversal: Algorithms

• Depth-First Search
• Uses a Stack
• (Recursively) Explore far away from src first

• Breadth-First Search
• Uses a Queue
• Explore everything near src first
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Traversal: Iterative DFS (Less common)

Order Processed:

10

A

B

D E

C

F

HG

IterativeDFS(Node src) {
 s = new Stack()
 s.push(src)
 mark src as visited
 while(s is not empty) {
  v = s.pop() // and "process"
  for each node u adjacent to v
  if(u is not marked)
   mark u as visited
   s.push(u)
  }
 }
}
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Traversal: Iterative DFS (Less common) (Soln.)

Order Processed:
A, C, F, H, G, B, E, D
A, B, D, E, C, F, G, H
etc.
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IterativeDFS(Node src) {
 s = new Stack()
 s.push(src)
 mark src as visited
 while(s is not empty) {
  v = s.pop() // and "process"
  for each node u adjacent to v
  if(u is not marked)
   mark u as visited
   s.push(u)
  }
 }
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Traversal: Recursive DFS (More common)
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RecursiveDFS(Node v) {
 mark v as visited // and "process"
 for each node u adjacent to v
  if u is not marked
   RecursiveDFS(u)
}

Order Processed:
Same as before!
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Cycle Detection
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RecursiveDFS(Node v) {
 mark v as visited // and "process"
 for each node u adjacent to v
  if u is not marked
   RecursiveDFS(u)
}

• Intuition: store the “current 
path” while doing DFS

• If you see a neighbor (‘u’ in 
pseudocode) that’s already in the 
current path, then cycle
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Use Iterative DFS for Exams
Recursive DFS recommended for EX7
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Any Questions?
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Traversal: BFS (Soln.)
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BFS(Node src) {
 s = new Queue()
 s.enqueue(src)
 mark src as visited
 while(s is not empty) {
  v = s.dequeue() // and "process"
  for each node u adjacent to v
  if(u is not marked)
   mark u as visited
   s.enqueue(u)
  }
 }
}

Order Processed:
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Traversal: BFS (Soln.)
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BFS(Node src) {
 s = new Queue()
 s.enqueue(src)
 mark src as visited
 while(s is not empty) {
  v = s.dequeue() // and "process"
  for each node u adjacent to v
  if(u is not marked)
   mark u as visited
   s.enqueue(u)
  }
 }
}

Order Processed:
A, B, C, D, E, F, G, H
etc., any level-order traversal



Traversal: DFS vs BFS

• Depth-First Search (DFS):
• Memory: Generally, DFS uses less memory compared to BFS as it only needs 

to store the nodes along the current branch.
• Applications: Topological Sorting, Cycle Detection, etc.

• Breadth-First Search (BFS):
• Memory: BFS tends to use more memory than DFS, as it needs to store all 

nodes at the current level before moving to the next level.
• Applications: Shortest Paths

• 3rd Option: Iterative Deep DFS (IDDFS)
• Use DFS with increasing depth limits
• Good memory + finds shortest path
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Traversal: Saving the Path

• Old Problem: Is there a path from src to specific nodes?
• New Problem: What is the path from src to specific nodes?

Q: How do we output the actual path?
A:
• When marking, store the predecessor (previous) node along the path
• When you're done search, follow the pred backwards to where you 

started (and then reverse it to get the path)
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BFS with Path Saving
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IterativeDFS(Node src) {
 s = new Queue()
 s.enqueue(src)
 src.pred = null // same as marking src as visited
 while(s is not empty) {
  v = s.dequeue() // and "process"
  for each node u adjacent to v
  if(u is not marked)
   u.pred = v // previous node of u in the path is v
   s.enqueue(u)
  }
 }
}
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Traversal: BFS Shortest Path Example

What is the shortest path from Seattle to Austin?
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Traversal: BFS Shortest Path Example (Soln.)

What is the shortest path from Seattle to Austin?
Seattle -> Chicago -> Dallas -> Austin
Seattle -> Salt Lake City -> Dallas -> Austin
Seattle -> San Francisco -> Dallas -> Austin
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Any Questions?
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How to use BFS to find

shortest paths in a weighted

graph ? (Assume weights are

E2, 3. ... 3)
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