
Lecture 14:
Introduction to Graphs

CSE 332: Data Structures & Parallelism
Yafqa Khan

Summer 2025

1

Announcements

• EX05 due today
• EX06 due Friday
• Don’t talk about Exam 1!

• Still makeups to proctor

• Exam 2 information posted on website

2

Today

• Graphs
• Introduction
• Terminologies

• Graph Data Structures
• Adjacency Matrix
• Adjacency List

3

Graphs: Basic Mathematical

• A graph is a mathematical representation of a set of objects
(vertices/nodes) connected by links (edges).

• A graph 𝐺 is a pair of sets 𝑉, 𝐸 where:
• 𝑉 = 𝑣1, 𝑣2, … , 𝑣𝑛 , a set of vertices (or nodes)
• 𝐸 = 𝑒1, 𝑒2, … , 𝑒𝑚 , a set of edges

• Where each edge 𝑒𝑖 = 𝑣𝑗, 𝑣𝑘 , a pair of vertices
• An edge "connects" the vertices

4

Han

Leia

Luke

V = {Han,Leia,Luke}
E = {(Luke,Leia),
 (Han,Leia),
 (Leia,Han)}

-

- -

(- -
-

- -

-
=

Graphs: Basic Intuition

• A bunch of circles and arrows

5

Han

Leia

Luke

V = {Han,Leia,Luke}
E = {(Luke,Leia),
 (Han,Leia),
 (Leia,Han)}

Graphs: Terminology Vomit (Memorize!)

• Vertex (or Nodes)
• Edges
• Directed vs Undirected
• Weighted vs Unweighted
• Degree (of a Vertex)

• In-Degree
• Out-Degree

• Walk vs Path (or Simple Path) vs Cycles
• Cyclic vs Acyclic

• Connected vs Disconnected
• Sparse vs Dense
• and many more...

6

=

Graphs: Yet Another Internet Warning

There are millions of different terminologies, algorithms, etc. with
graphs. Use lecture slides.

7

Graphs: Undirected Graphs

• In Undirected graphs, edges have no specific direction
• Edges are always "two-way"

• Thus, 𝑣, 𝑢 ∈ 𝐸 imply 𝑢, 𝑣 ∈ 𝐸
• Only one of these edges needs to be in the set; the other is implicit

• Degree of a vertex: number of edges containing that vertex
• Put another way: the number of adjacent vertices

8

A

B

C

D

-

-

O

-> =

-

Graphs: Directed Graphs

• In Directed graphs (sometimes called digraphs), edges have a
direction

• Thus, 𝑣, 𝑢 ∈ 𝐸 DOES NOT imply 𝑢, 𝑣 ∈ 𝐸
• 𝑣, 𝑢 ∈ 𝐸 intuitively means 𝑣 → 𝑢
• 𝑣 is the source and 𝑢 is the destination

• In-Degree of a vertex 𝑤: number of In-bound edges
• i.e., edges where 𝑤 is the destination

• Out-Degree of a vertex 𝑤: number of Out-bound edges
• i.e., edges where 𝑤 is the source 9

or

2 edges here

A

B

C

D

A

B

C

D

-

O
O

- -

- E
--

-

-

Graphs: Self-Edges

• We pretend they don't exist
• A self-edge a.k.a. a self-loop is an edge of the form 𝑣, 𝑣

• Depending on the use/algorithm, a graph may have:
• No self-edges
• Some self-edges
• All self-edges (often therefore implicit, but we will be explicit)

• A node can have a degree / in-degree / out-degree of zero
• A graph does not have to be connected (In an undirected graph, this

means we can follow edges from any node to every other node), even
if every node has non-zero degree

10

𝑣

0.9

O
-OD- o

-

- ·
-

-

-
- -

Graphs: Weighted Graphs

• In a weighted graph, each edge has a weight (or cost)
• Typically, a number (int)
• Negative weights are possible (but rare)

So far, possible graph types:
Undirected Unweighted graphs
Undirected Weighted graphs
Directed Unweighted graphs
Directed Weighted graphs

11

20

30

35

60

Mukilteo

Edmonds

Seattle

Bremerton

Bainbridge

Kingston

Clinton#F

Any Questions?

12

Graphs: (Walks) vs Paths vs Cycles

• Walk: Sequence of adjacent vertices
• e.g., ABA, ABCD, ABC, etc.

• Path (or Simple Path): A walk that doesn't repeat a vertex
• e.g., ABCD, ABC, AB
• NOT ABA

• Cycle: A walk that doesn't repeat a vertex except the first and last vertex
• e.g., ABCDA
• NOT ABCD

____ Length: Number of edges in ____
____ Cost: Sum of weights of each edge in ____ 13

A B C D
1 2

3 1

1

-
- ovgo

-

- -

- - -
-

-

X X
X X

Graphs: Paths vs Cycles Example

• Is there a path from A to D?

• Does the graph contain any cycles?

• What if undirected?

14

A

B

C

D

No-

No

Tes(ABD) ,
Yes

,
(BBC B)

Graphs: Paths vs Cycles Example (Soln.)

• Is there a path from A to D?
No
• Does the graph contain any cycles? No

• What if undirected?
Yes, Yes

15

A

B

C

D

Graphs: Undirected Graph Connectivity

• An undirected graph is connected if for all pairs of vertices 𝑣, 𝑢 ,
there exists a path from 𝑣 to 𝑢

• An undirected graph is complete, a.k.a. fully connected if for all pairs
of vertices 𝑣, 𝑢 , there exists an edge from 𝑣 to 𝑢

16

Connected graph Disconnected graph

(plus self-edges)

- =

X-
-

- Ks

Graphs: Directed Graph Connectivity

• A directed graph is strongly connected if there is a path from
every vertex to every other vertex

• A directed graph is weakly connected if there is a path from
every vertex to every other vertex ignoring direction of edges

• A directed graph is complete a.k.a. fully connected if for all
pairs of vertices 𝑣, 𝑢 , there exists an edge from 𝑣 to 𝑢

17

(plus self-edges)

-

-

- -

(u) (u
, v)-

-

- -

iundirected version is connected , weaklycounceted
-

-

-

Cr> u) (4 , v)

Graphs: Practical Examples

For undirected graphs: connected?
For directed graphs: strongly connected? weakly connected?
weighted?
• Web pages with links
• Facebook friends
• Methods in a program that call each other
• Road maps (e.g., Google maps)
• Airline routes
• Course pre-requisites
• … 18

o
- O 3 %

I I- > O -
O

Graphs: Trees

• When talking about graphs, we say a tree is a graph that is:
• undirected
• acyclic
• connected

• So all trees are graphs, but not all graphs are trees

• How does this relate to the trees we know and love?...

19

A

B

D E

C

F

HG

=

-

-

-

- - go 8
·
↳ g

Graphs: Rooted Trees
• We are more accustomed to rooted trees where:

• We identify a unique (“special”) root
• We think of edges as directed: parent to children

• Given a tree, once you pick a root, you have a unique rooted tree (just
drawn differently and with undirected edges)

20

A

B

D E

C

F

HG

redrawn
A

B

D E

C

F

HG

A

B

D E

C

F

HG

redrawn

F

G H C

A

B

D E

-

e O
& & ↓
L

↓ 2 ↓
Q

Graphs: Directed Acyclic Graphs (DAGs)

• A DAG is a directed graph with no cycles (Acyclic)
• Every rooted directed tree is a DAG

• But not every DAG is a rooted directed tree:

• Every DAG is a directed graph
• But not every directed graph is a DAG:

21

Not a rooted directed tree,
Has a cycle (in the undirected
sense)

-

- -

-⑭

Graphs: Number of Vertices vs Edges (Math)

• Correct Mathematical Notation:
• Number of Vertices = 𝑣1, 𝑣2, … , 𝑣𝑛 = 𝑉
• Number of Edges = 𝑒1, 𝑒2, … , 𝑒𝑚 = 𝐸

• Common Notation: 𝑉 or 𝐸
• Given 𝑉 vertices, what is:

• Minimum number of Edges?

• Maximum for undirected?

• Maximum for directed?

22

~ I So
- O 2+ 2 + 2
- to - + 3

-↳e o
S

- -> I
v(v - 1)

Graphs: Number of Vertices vs Edges (Math)

• Correct Mathematical Notation:
• Number of Vertices = 𝑣1, 𝑣2, … , 𝑣𝑛 = 𝑉
• Number of Edges = 𝑒1, 𝑒2, … , 𝑒𝑚 = 𝐸

• Common Notation: 𝑉 or 𝐸
• Given 𝑉 vertices, what is:

• Minimum number of Edges?
• 0

• Maximum for undirected?
• 𝑉 𝑉+1

2
 (with self-edges) or 𝑉 𝑉+1

2
− 𝑉 (no self-edges)

• Maximum for directed?
• 𝑉2

23

0-0-
(2/self-edges) VIV-1) who self edges

Graphs: Sparse vs Dense Graphs

• In a graph,
• Undirected, 0 ≤ 𝐸 < 𝑉 2

• Directed: 0 ≤ 𝐸 ≤ 𝑉 2

• So: 𝐸 ∈ 𝒪 𝑉 2

• Sparse: when 𝐸 ∈ Θ 𝑉 i.e., "few edges"
• Dense: when 𝐸 ∈ Θ 𝑉 2 i.e., "many edges"

24

0 edges 𝒪 𝑉 2 edges𝒪 𝑉 edges

Sparse Dense

-

O
-

-

--

= =>
-> =>

=> -
- S=>

sG S

Any Questions?

25

Graphs: The Data Structure

• Many data structures, tradeoffs
• Exploits graph properties
• Common operations:

• "Is 𝑣, 𝑢 an edge?"
• "What are the neighbors of 𝑣?"

• Two standards:
• Adjacency Matrix
• Adjacency List

26

-

-

-

-

S

Graphs: Adjacency Matrix

• Assign each node a number from 0 to 𝑉 − 1
• A 𝑉 by 𝑉 matrix M (2-D array) of Booleans
• M[v][u]==true means there is an edge from v to u

27

A

B

C

D

To

Fr
om

A B C D

A F T F F

B T F F F

C F T F T

D F F F F

- --

--- - -

⑨dto

Any Questions?

28

Adjacency Matrix: Properties

• Running time to:
• Get a vertex’s out-bound edges:
• Get a vertex’s in-bound edges:
• Decide if some edge exists:
• Insert an edge:
• Delete an edge:

• Space requirements:
• Better for Sparse or Dense Graphs?

29

A

B

C

D

To

Fr
om

A B C D

A F T F F

B T F F F

C F T F T

D F F F F

du -

1-oOli% o 0⑭
O

O-
Dense

Adjacency Matrix: Properties (Soln.)

• Running time to:
• Get a vertex’s out-bound edges: 𝒪 𝑉
• Get a vertex’s in-bound edges: 𝒪 𝑉
• Decide if some edge exists: 𝒪 1
• Insert an edge: 𝒪 1
• Delete an edge: 𝒪 1

• Space requirements: 𝒪 𝑉 2

• Better for Sparse or Dense Graphs? Dense

30

A

B

C

D

To

Fr
om

A B C D

A F T F F

B T F F F

C F T F T

D F F F F

Adjacency Matrix: Adaptability

• How does it work for undirected graph?

• How does it work for weighted graph?

31

-

-

Adjacency Matrix: Adaptability (Soln.)

• How does it work for undirected graph?
• Symmetric in diagonal axis (e.g., M[v][u]==true , then M[u][v]==true)

• How does it work for weighted graph?
• Instead of boolean, use integer
• "not an edge" can be 0, -1, infinite, etc.

32

-

- --
-

-

-

- Mu[v]=
en

Graphs: Adjacency List

• Assign each node a number from 0 to 𝑉 − 1
• An array arr of length 𝑉 where arr[i] stores a (linked) list of all

adjacent vertices

33

A

B

C

D
A

B

C

D

B /

A /

D B /

/

·T

Any Questions?

34

Adjacency List: Properties
• Running time to:

• Get a vertex’s out-bound edges:

• Get a vertex’s in-bound edges:

• Decide if some edge exists:

• Insert an edge:

• Delete an edge:

• Space requirements:
• Better for Sparse or Dense Graphs? 35

A

B

C

D

A

B

C

D

B /

A /

D B /

/

G
O

O O O

Old) d = degree ↓ M a

n+ (1)

o(d)-

0(1)

O(d)
#+ IFs,arseO

Adjacency List: Properties (Soln.)
• Running time to:

• Get a vertex’s out-bound edges:
• 𝒪 𝑑 , where 𝑑 is out-degree of vertex

• Get a vertex’s in-bound edges:
• 𝒪 𝑉 + 𝐸 , note: can keep 2nd "reverse" adjacency list for faster

• Decide if some edge exists:
• 𝒪 𝑑 , where 𝑑 is out-degree of source vertex

• Insert an edge:
• 𝒪 1 , unless you need to check for duplicates then 𝒪 𝑑

• Delete an edge:
• 𝒪 𝑑

• Space requirements: 𝒪 𝑉 + 𝐸
• Better for Sparse or Dense Graphs? Sparse 36

A

B

C

D

A

B

C

D

B /

A /

D B /

/

Any Questions?

37

Matrix vs List, which is better?

• Graphs are often sparse:
• Streets form grids

• every corner is not connected to every other corner
• Airlines rarely fly to all possible cities

• or if they do it is to/from a hub rather than directly to/from all small cities to other small
cities

• Adjacency lists should generally be your default choice
• Slower performance compensated by greater space savings

38

-

-

-

& -

- -

Matrix vs List, which is better?

• Graphs are often sparse:
• Streets form grids

• every corner is not connected to every other corner
• Airlines rarely fly to all possible cities

• or if they do it is to/from a hub rather than directly to/from all small cities to other small
cities

• Adjacency lists should generally be your default choice
• Slower performance compensated by greater space savings

38

