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Announcements

• EX05 due today
• EX06 due Friday
• Don’t talk about Exam 1!

• Still makeups to proctor

• Exam 2 information posted on website
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Today

• Graphs
• Introduction
• Terminologies

• Graph Data Structures
• Adjacency Matrix
• Adjacency List
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Graphs: Basic Mathematical

• A graph is a mathematical representation of a set of objects 
(vertices/nodes) connected by links (edges).

• A graph 𝐺 is a pair of sets 𝑉, 𝐸  where:
• 𝑉 = 𝑣1, 𝑣2, … , 𝑣𝑛 , a set of vertices (or nodes)
• 𝐸 = 𝑒1, 𝑒2, … , 𝑒𝑚 , a set of edges

• Where each edge 𝑒𝑖 = 𝑣𝑗, 𝑣𝑘 , a pair of vertices
• An edge "connects" the vertices
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Graphs: Basic Intuition

• A bunch of circles and arrows 
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Graphs: Terminology Vomit (Memorize!)

• Vertex (or Nodes)
• Edges
• Directed vs Undirected
• Weighted vs Unweighted
• Degree (of a Vertex)

• In-Degree
• Out-Degree

• Walk vs Path (or Simple Path) vs Cycles
• Cyclic vs Acyclic

• Connected vs Disconnected
• Sparse vs Dense
• and many more... 
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Graphs: Yet Another Internet Warning

There are millions of different terminologies, algorithms, etc. with 
graphs. Use lecture slides.
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Graphs: Undirected Graphs

• In Undirected graphs, edges have no specific direction
• Edges are always "two-way"

• Thus, 𝑣, 𝑢 ∈ 𝐸 imply 𝑢, 𝑣 ∈ 𝐸  
• Only one of these edges needs to be in the set; the other is implicit

• Degree of a vertex: number of edges containing that vertex
• Put another way: the number of adjacent vertices
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Graphs: Directed Graphs

• In Directed graphs (sometimes called digraphs), edges have a 
direction

• Thus, 𝑣, 𝑢 ∈ 𝐸 DOES NOT imply 𝑢, 𝑣 ∈ 𝐸 
• 𝑣, 𝑢 ∈ 𝐸 intuitively means 𝑣 → 𝑢
• 𝑣 is the source and 𝑢 is the destination

• In-Degree of a vertex 𝑤: number of In-bound edges
• i.e., edges where 𝑤 is the destination

• Out-Degree of a vertex 𝑤: number of Out-bound edges
• i.e., edges where 𝑤 is the source 9
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Graphs: Self-Edges

• We pretend they don't exist
• A self-edge a.k.a. a self-loop is an edge of the form 𝑣, 𝑣

• Depending on the use/algorithm, a graph may have:
• No self-edges
• Some self-edges
• All self-edges (often therefore implicit, but we will be explicit)

• A node can have a degree / in-degree / out-degree of zero
• A graph does not have to be connected (In an undirected graph, this 

means we can follow edges from any node to every other node), even 
if every node has non-zero degree
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Graphs: Weighted Graphs

• In a weighted graph, each edge has a weight (or cost)
• Typically, a number (int)
• Negative weights are possible (but rare)

So far, possible graph types:
Undirected Unweighted graphs
Undirected Weighted graphs
Directed Unweighted graphs
Directed Weighted graphs
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Any Questions?
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Graphs: (Walks) vs Paths vs Cycles

• Walk: Sequence of adjacent vertices
• e.g., ABA, ABCD, ABC, etc.

• Path (or Simple Path): A walk that doesn't repeat a vertex
• e.g., ABCD, ABC, AB
• NOT ABA

• Cycle: A walk that doesn't repeat a vertex except the first and last vertex
• e.g., ABCDA
• NOT ABCD

____ Length: Number of edges in ____
____ Cost: Sum of weights of each edge in ____ 13
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Graphs: Paths vs Cycles Example

• Is there a path from A to D? 

• Does the graph contain any cycles?

• What if undirected?
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Graphs: Paths vs Cycles Example (Soln.)

• Is there a path from A to D? 
No
• Does the graph contain any cycles? No

• What if undirected?
Yes, Yes
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Graphs: Undirected Graph Connectivity

• An undirected graph is connected if for all pairs of vertices 𝑣, 𝑢 , 
there exists a path from 𝑣 to 𝑢

• An undirected graph is complete, a.k.a. fully connected if for all pairs 
of vertices 𝑣, 𝑢 , there exists an edge from 𝑣 to 𝑢
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Graphs: Directed Graph Connectivity

• A directed graph is strongly connected if there is a path from 
every vertex to every other vertex

• A directed graph is weakly connected if there is a path from 
every vertex to every other vertex ignoring direction of edges

• A directed graph is complete a.k.a. fully connected if for all 
pairs of vertices 𝑣, 𝑢 , there exists an edge from 𝑣 to 𝑢
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Graphs: Practical Examples

For undirected graphs: connected? 
For directed graphs: strongly connected? weakly connected?
weighted?
• Web pages with links
• Facebook friends
• Methods in a program that call each other
• Road maps (e.g., Google maps)
• Airline routes
• Course pre-requisites
• … 18
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Graphs: Trees

• When talking about graphs, we say a tree is a graph that is:
• undirected
• acyclic
• connected

• So all trees are graphs, but not all graphs are trees

• How does this relate to the trees we know and love?...
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Graphs: Rooted Trees
• We are more accustomed to rooted trees where:

• We identify a unique (“special”) root
• We think of edges as directed: parent to children

• Given a tree, once you pick a root, you have a unique rooted tree (just 
drawn differently and with undirected edges)
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Graphs: Directed Acyclic Graphs (DAGs)

• A DAG is a directed graph with no cycles (Acyclic)
• Every rooted directed tree is a DAG

• But not every DAG is a rooted directed tree:

• Every DAG is a directed graph
• But not every directed graph is a DAG:
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Graphs: Number of Vertices vs Edges (Math)

• Correct Mathematical Notation: 
• Number of Vertices = 𝑣1, 𝑣2, … , 𝑣𝑛 = 𝑉
• Number of Edges = 𝑒1, 𝑒2, … , 𝑒𝑚 = 𝐸

• Common Notation: 𝑉 or 𝐸
• Given 𝑉  vertices, what is:

• Minimum number of Edges?

• Maximum for undirected?

• Maximum for directed?
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Graphs: Number of Vertices vs Edges (Math)

• Correct Mathematical Notation: 
• Number of Vertices = 𝑣1, 𝑣2, … , 𝑣𝑛 = 𝑉
• Number of Edges = 𝑒1, 𝑒2, … , 𝑒𝑚 = 𝐸

• Common Notation: 𝑉 or 𝐸
• Given 𝑉  vertices, what is:

• Minimum number of Edges?
• 0

• Maximum for undirected?
• 𝑉 𝑉+1

2
 (with self-edges) or 𝑉 𝑉+1

2
− 𝑉 (no self-edges)

• Maximum for directed?
• 𝑉2
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Graphs: Sparse vs Dense Graphs

• In a graph,
• Undirected, 0 ≤ 𝐸 < 𝑉 2

• Directed: 0 ≤ 𝐸 ≤ 𝑉 2

• So: 𝐸 ∈ 𝒪 𝑉 2

• Sparse: when 𝐸 ∈ Θ 𝑉  i.e., "few edges"
• Dense: when 𝐸 ∈ Θ 𝑉 2  i.e., "many edges"
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Any Questions?
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Graphs: The Data Structure

• Many data structures, tradeoffs
• Exploits graph properties
• Common operations:

• "Is 𝑣, 𝑢  an edge?"
• "What are the neighbors of 𝑣?"

• Two standards:
• Adjacency Matrix
• Adjacency List
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Graphs: Adjacency Matrix

• Assign each node a number from 0 to 𝑉 − 1
• A 𝑉  by 𝑉  matrix M (2-D array) of Booleans
• M[v][u]==true means there is an edge from v to u
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Any Questions?
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Adjacency Matrix: Properties

• Running time to:
• Get a vertex’s out-bound edges:
• Get a vertex’s in-bound edges:
• Decide if some edge exists:
• Insert an edge:
• Delete an edge:

• Space requirements:
• Better for Sparse or Dense Graphs?
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Adjacency Matrix: Properties (Soln.)

• Running time to:
• Get a vertex’s out-bound edges: 𝒪 𝑉
• Get a vertex’s in-bound edges: 𝒪 𝑉
• Decide if some edge exists: 𝒪 1
• Insert an edge: 𝒪 1
• Delete an edge: 𝒪 1

• Space requirements: 𝒪 𝑉 2

• Better for Sparse or Dense Graphs? Dense
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Adjacency Matrix: Adaptability

• How does it work for undirected graph?

• How does it work for weighted graph?
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Adjacency Matrix: Adaptability (Soln.)

• How does it work for undirected graph?
• Symmetric in diagonal axis (e.g., M[v][u]==true , then M[u][v]==true)

• How does it work for weighted graph?
• Instead of boolean, use integer
• "not an edge" can be 0, -1, infinite, etc.
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Graphs: Adjacency List

• Assign each node a number from 0 to 𝑉 − 1
• An array arr of length 𝑉  where arr[i] stores a (linked) list of all 

adjacent vertices
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Any Questions?
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Adjacency List: Properties
• Running time to:

• Get a vertex’s out-bound edges: 

• Get a vertex’s in-bound edges: 

• Decide if some edge exists: 

• Insert an edge: 

• Delete an edge: 

• Space requirements: 
• Better for Sparse or Dense Graphs? 35
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Adjacency List: Properties (Soln.)
• Running time to:

• Get a vertex’s out-bound edges: 
• 𝒪 𝑑 , where 𝑑 is out-degree of vertex

• Get a vertex’s in-bound edges: 
• 𝒪 𝑉 + 𝐸 , note: can keep 2nd "reverse" adjacency list for faster 

• Decide if some edge exists: 
• 𝒪 𝑑 , where 𝑑 is out-degree of source vertex

• Insert an edge: 
• 𝒪 1 , unless you need to check for duplicates then 𝒪 𝑑

• Delete an edge: 
• 𝒪 𝑑

• Space requirements: 𝒪 𝑉 + 𝐸
• Better for Sparse or Dense Graphs? Sparse 36
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Any Questions?
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Matrix vs List, which is better?

• Graphs are often sparse:
• Streets form grids 

• every corner is not connected to every other corner
• Airlines rarely fly to all possible cities 

• or if they do it is to/from a hub rather than directly to/from all small cities to other small 
cities

• Adjacency lists should generally be your default choice
• Slower performance compensated by greater space savings
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Matrix vs List, which is better?

• Graphs are often sparse:
• Streets form grids 

• every corner is not connected to every other corner
• Airlines rarely fly to all possible cities 

• or if they do it is to/from a hub rather than directly to/from all small cities to other small 
cities

• Adjacency lists should generally be your default choice
• Slower performance compensated by greater space savings
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