Lecture 14:
Introduction to Graphs

CSE 332: Data Structures & Parallelism
Yafga Khan
Summer 2025

Announcements

* EXO5 due today
* EXO6 due Friday

* Don’t talk about Exam 1!
* Still makeups to proctor

* Exam 2 information posted on website

Today

* Graphs
* Introduction
e Terminologies

* Graph Data Structures
* Adjacency Matrix
e Adjacency List

Graphs: Basic Mathematical

* A graph is a mathematical representation of a set of objects

(vertices/nodes) connected by links (edges).

* A graph G is a pair of sets (V, E) where:
* V ={vy,v,,..,1,}, a set of vertices (or nodes)
« £ ={eq,e,,..,e,}, asetof edges
* Where each edge e; = (vj, vk), a pair of vertices
* An edge "connects" the vertices

Han Luke

Leia

<
I

{Han, Leia, Luke}
E = {(Luke,Leia),
(Han, Leia),
(Leia, Han) }

Graphs: Basic Intuition

* A bunch of circles and arrows

Han Luke

Leia

<
|

= {Han, Leia, Luke}
E = {(Luke,Leia),
(Han, Leia),
(Leia, Han) }

Graphs: Terminology Vomit (Memorize!)

* \ertex (or Nodes)

* Edges

* Directed vs Undirected

* Weighted vs Unweighted

* Degree (of a Vertex)
* In-Degree
* Qut-Degree

* Walk vs Path (or Simple Path) vs Cycles
* Cyclic vs Acyclic

e Connected vs Disconnected
* Sparse vs Dense

* and many more...

Graphs: Yet Another Internet Warning

There are millions of different terminologies, algorithms, etc. with
graphs. Use lecture slides.

Graphs: Undirected Graphs

* In Undirected graphs, edges have no specific direction

* Edges are always "two-way"
O
A @oc
O

B

e Thus, (v,u) € E imply (u,v) € E

* Only one of these edges needs to be in the set; the other is implicit

* Degree of a vertex: number of edges containing that vertex
e Put another way: the number of adjacent vertices

Graphs: Directed Graphs

* In Directed graphs ésemetm:res—ealrteel—ehg%aahs) edges have a
direction O

A or OD

B
* Thus, (v,u) € E DOES NOT imply (u,v) € E 2 edges here ~ B
e (v,u) € E intuitively meansv - u
e vis the source and u is the destination

* In-Degree of a vertex w: number of In-bound edges
* i.e., edges where w is the destination

* Qut-Degree of a vertex w: number of Out-bound edges
* i.e., edges where w is the source

Graphs: Self-Edges

* We pretend they don't exist

* A self-edge a.k.a. a self-loop is an edge of the form (v, v)

* Depending on the use/algorithm, a graph may have: 0.9
* No self-edges
* Some self-edges
» All self-edges (often therefore implicit, but we will be explicit)

* A node can have a degree / in-degree / out-degree of zero

* A graph does not have to be connected (In an undirected graph, this
means we can follow edges from any node to every other node), even
if every node has non-zero degree

Graphs: Weighted Graphs

* In a weighted graph, each edge has a weight (or cost)
* Typically, a number (int)

* Negative weights are possible (but rare) Clinton O
\O Mukilteo

So far, possible graph types: Kingston O% Edmonds
Undirected Unweighted graphs

. . Bainbridge O 35 Seqtt!
Undirected Weighted graphs eattle
Directed Unweighted graphs 60

Directed Weighted graphs sremerton ()

Any Questions?

Graphs: (Walks) vs Paths vs Cycles

(» >: O=0x
* Walk: Sequence of adjacent vertices ? .

* e.g., ABA, ABCD, ABC, etc.

e Path (or Simple Path): A walk that doesn't repeat a vertex
* e.g., ABCD, ABC, AB
* NOT ABA
* Cycle: A walk that doesn't repeat a vertex except the first and last vertex

* e.g., ABCDA
* NOT ABCD

__Length: Number of edges in _

_ Cost: Sum of weights of each edge in _

Graphs: Paths vs Cycles Example

* |s there a path from A to D?

e Does the graph contain any cycles?

A OD\‘
Q\M

e What if undirected?

Graphs: Paths vs Cycles Example (Soln.)

* |s there a path from A to D?
No
* Does the graph contain any cycles? No

D
A O\‘
o :
EBB/O
* What if undirected?
Yes, Yes

Graphs: Undirected Graph Connectivity

* An undirected graph is connected if for all pairs of vertices (v, u),
there exists a path from v to u

o S o 0
== \‘ I 2 \‘
o o

Connected graph Disconnected graph

* An undirected graph is complete, a.k.a. fully connected if for all pairs
of vertices (v, u), there exists an edge from v to u

(plus self-edges)

Graphs: Directed Graph Connectivity

* A directed graph is strongly connected if there is a path from ‘\P

every vertex to every other vertex

* A directed graph is weakly connected if there is a path from
every vertex to every other vertex ignoring direction of edges ‘

¢l

(plus self-edges)

* A directed graph is complete a.k.a. fully connected if for all
pairs of vertices (v, u), there exists an edge from v to u

Graphs: Practical Examples

For undirected graphs: connected?

For directed graphs: strongly connected? weakly connected?
weighted?

* Web pages with links

* Facebook friends

* Methods in a program that call each other

* Road maps (e.g., Google maps)

* Airline routes

* Course pre-requisites

18

Graphs: Trees

* When talking about graphs, we say a tree is a graph that is: O e

* undirected G
* acyclic
e connected

* So all trees are graphs, but not all graphs are trees é
* How does this relate to the trees we know and love?... é%

Graphs: Rooted Trees

 We are more accustomed to rooted trees where:
III

* We identify a unique (“special”) root
* We think of edges as directed: parent to children

* Given a tree, once you pick a root, you have a unique rooted tree (just
drawn differently and with undirected edges)

© @ € F

redrawn

(E
B
®

©
6

Graphs: Directed Acyclic Graphs (DAGs)

A DAG is a directed graph with no cycles (Acyclic)

e Every rooted directed tree is a DAG
* But not every DAG is a rooted directed tree:

‘ Not a rooted directed tree,
Has a cycle (in the undirected
€ sense)

* Every DAG is a directed graph
* But not every directed graph is a DAG: ‘

o

Graphs: Number of Vertices vs Edges (Math)

* Correct Mathematical Notation:
* Number of Vertices = |{vy, V5, ..., v, }| = |V|
* Number of Edges = |{eq, €5, ...,en}| = |E]

e Common Notation: lV or E

e Given |V| vertices, what is:
* Minimum number of Edges?

e Maximum for undirected?

e Maximum for directed?

Graphs: Number of Vertices vs Edges (Math)

* Correct Mathematical Notation:
* Number of Vertices = |{vy, v, ..., v, }| = |V|
* Number of Edges = |{eq, €5, ...,en}| = |E]

e Common Notation: lV or E

e Given |V| vertices, what is:
* Minimum number of Edges?
. 0

e Maximum for undirected?

, V(v+1) V(V+1)

(with self-edges) or — V (no self-edges)

e Maximum for directed?
° VZ

Graphs: Sparse vs Dense Graphs

* In a graph,
« Undirected, 0 < |E| < |V]|?
* Directed: 0 < |E| < |V]?

* So: |[E|l € O(|V|?)
 Sparse: when |E| € O(|V]) i.e., "few edges"
* Dense: when |E| € O(|V]?) i.e., "many edges"

Sparse Dense

0 edges O(|V]) edges O(|V|?) edges

Any Questions?

Graphs: The Data Structure

* Many data structures, tradeoffs
* Exploits graph properties

e Common operations:
* "Is (v,u) an edge?"
* "What are the neighbors of v?"

* Two standards:
* Adjacency Matrix
* Adjacency List

Graphs: Adjacency Matrix

* Assign each node a number from O to |V]| — 1
* A |V| by |V| matrix M (2-D array) of Booleans
e M[v] [u]==true means there is an edge from v to u

To
D A B C D
A O . A |F F |F
gB F |F |F
B L
C |F F
D |F |F |F |F

27

Any Questions?

Adjacency Matrix: Properties

* Running time to:
* Get a vertex’s out-bound edges:
e Get a vertex’s in-bound edges:
e Decide if some edge exists:
* Insert an edge:
* Delete an edge:

* Space requirements:
* Better for Sparse or Dense Graphs?

From
O O W >

To

B C D
F |F

F |F |F
F

F |F |F

Adjacency Matrix: Properties (Soln.)

* Running time to:
* Get a vertex’s out-bound edges: O(|V|)
e Get a vertex’s in-bound edges: O(|V|)
 Decide if some edge exists: O(1)
* Insert an edge: 0(1)
* Delete an edge: O(1)

e Space requirements: O(|V|%)
* Better for Sparse or Dense Graphs? Dense

From
O O W >

M| M| M| T 0

30

Adjacency Matrix: Adaptability

* How does it work for undirected graph?

* How does it work for weighted graph?

Adjacency Matrix: Adaptability (Soln.)

* How does it work for undirected graph?
 Symmetricin diagonal axis (e.g., M[v] [u]l==true,thenM[u] [v]==true)

* How does it work for weighted graph?

* Instead of boolean, use integer
* "notan edge" can be 0, -1, infinite, etc.

32

Graphs: Adjacency List

* Assign each node a number from O to |V]| — 1

* An array arr of length |V| where arr [1] stores a (linked) list of all
adjacent vertices

O A "B/
A C
B A/
B

Any Questions?

Adjacency List: Properties

* Running time to:
e Get a vertex’s out-bound edges:

Get a vertex’s in-bound edges:

Decide if some edge exists:

Insert an edge:

Delete an edge:

* Space requirements:
* Better for Sparse or Dense Graphs?

A 4
oc
S~

A

Adjacency List: Properties (Soln.)

v
>
S~

* Running time to:

C

v
=
v

e Get a vertex’s out-bound edges:
* 0(d), where d is out-degree of vertex D /
Get a vertex’s in-bound edges:
 O(|V]| + |E]), note: can keep 2nd "reverse" adjacency list for faster
Decide if some edge exists:
* O(d), where d is out-degree of source vertex
Insert an edge:
* 0(1), unless you need to check for duplicates then O(d) O

Delete an edge: A C
« 0(d)

 Space requirements: O(|V| + |E|) B

e Better for Sparse or Dense Graphs? Sparse .

Any Questions?

Matrix vs List, which is better?

* Graphs are often sparse:

e Streets form grids
¢ every corner is not connected to every other corner

 Airlines rarely fly to all possible cities

» orif they do it is to/from a hub rather than directly to/from all small cities to other small
cities

e Adjacency lists should generally be your default choice
* Slower performance compensated by greater space savings

	Slide 1: Lecture 14: Introduction to Graphs
	Slide 2: Announcements
	Slide 3: Today
	Slide 4: Graphs: Basic Mathematical
	Slide 5: Graphs: Basic Intuition
	Slide 6: Graphs: Terminology Vomit (Memorize!)
	Slide 7: Graphs: Yet Another Internet Warning
	Slide 8: Graphs: Undirected Graphs
	Slide 9: Graphs: Directed Graphs
	Slide 10: Graphs: Self-Edges
	Slide 11: Graphs: Weighted Graphs
	Slide 12: Any Questions?
	Slide 13: Graphs: (Walks) vs Paths vs Cycles
	Slide 14: Graphs: Paths vs Cycles Example
	Slide 15: Graphs: Paths vs Cycles Example (Soln.)
	Slide 16: Graphs: Undirected Graph Connectivity
	Slide 17: Graphs: Directed Graph Connectivity
	Slide 18: Graphs: Practical Examples
	Slide 19: Graphs: Trees
	Slide 20: Graphs: Rooted Trees
	Slide 21: Graphs: Directed Acyclic Graphs (DAGs)
	Slide 22: Graphs: Number of Vertices vs Edges (Math)
	Slide 23: Graphs: Number of Vertices vs Edges (Math)
	Slide 24: Graphs: Sparse vs Dense Graphs
	Slide 25: Any Questions?
	Slide 26: Graphs: The Data Structure
	Slide 27: Graphs: Adjacency Matrix
	Slide 28: Any Questions?
	Slide 29: Adjacency Matrix: Properties
	Slide 30: Adjacency Matrix: Properties (Soln.)
	Slide 31: Adjacency Matrix: Adaptability
	Slide 32: Adjacency Matrix: Adaptability (Soln.)
	Slide 33: Graphs: Adjacency List
	Slide 34: Any Questions?
	Slide 35: Adjacency List: Properties
	Slide 36: Adjacency List: Properties (Soln.)
	Slide 37: Any Questions?
	Slide 38: Matrix vs List, which is better?

