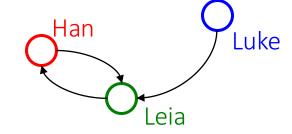
Lecture 14: Introduction to Graphs

CSE 332: Data Structures & Parallelism

Yafqa Khan

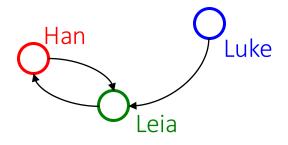
Summer 2025

Announcements


- EX05 due today
- EX06 due Friday
- Don't talk about Exam 1!
 - Still makeups to proctor
- Exam 2 information posted on website

Today

- Graphs
 - Introduction
 - Terminologies
- Graph Data Structures
 - Adjacency Matrix
 - Adjacency List

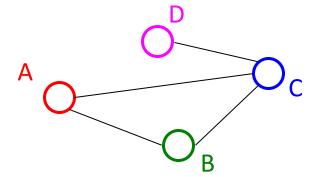

Graphs: Basic Mathematical

- A graph is a mathematical representation of a set of objects (vertices/nodes) connected by links (edges).
- A graph G is a pair of sets (V, E) where:
 - $V = \{v_1, v_2, \dots, v_n\}$, a set of vertices (or nodes)
 - $E = \{e_1, e_2, ..., e_m\}$, a set of edges
 - Where each edge $e_i = (v_i, v_k)$, a pair of vertices
 - An edge "connects" the vertices

Graphs: Basic Intuition

A bunch of circles and arrows

Graphs: Terminology Vomit (Memorize!)

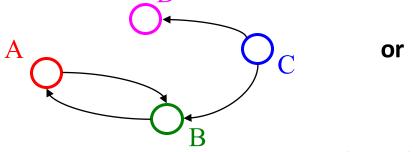

- Vertex (or Nodes)
- Edges
- Directed vs Undirected
- Weighted vs Unweighted
- Degree (of a Vertex)
 - In-Degree
 - Out-Degree
- Walk vs Path (or Simple Path) vs Cycles
 - Cyclic vs Acyclic
- Connected vs Disconnected
- Sparse vs Dense
- and many more...

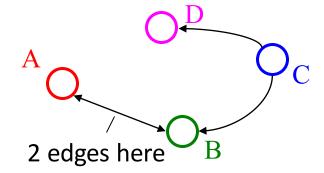
Graphs: Yet Another Internet Warning

There are millions of different terminologies, algorithms, etc. with graphs. Use lecture slides.

Graphs: Undirected Graphs

- In Undirected graphs, edges have no specific direction
 - Edges are always "two-way"

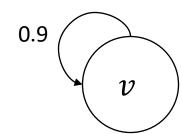



- Thus, $(v, u) \in E$ imply $(u, v) \in E$
 - Only one of these edges needs to be in the set; the other is implicit
- Degree of a vertex: number of edges containing that vertex
 - Put another way: the number of adjacent vertices

Graphs: Directed Graphs

• In Directed graphs (sometimes called digraphs), edges have a

direction



- Thus, $(v, u) \in E$ DOES NOT imply $(u, v) \in E$
 - $(v, u) \in E$ intuitively means $v \to u$
 - v is the source and u is the destination
- In-Degree of a vertex w: number of In-bound edges
 - i.e., edges where w is the destination
- Out-Degree of a vertex w: number of Out-bound edges
 - i.e., edges where w is the source

Graphs: Self-Edges

- We pretend they don't exist
- A self-edge a.k.a. a self-loop is an edge of the form (v, v)
 - Depending on the use/algorithm, a graph may have:
 - No self-edges
 - Some self-edges
 - All self-edges (often therefore implicit, but we will be explicit)
- A node can have a degree / in-degree / out-degree of zero
- A graph does not have to be connected (In an undirected graph, this
 means we can follow edges from any node to every other node), even
 if every node has non-zero degree

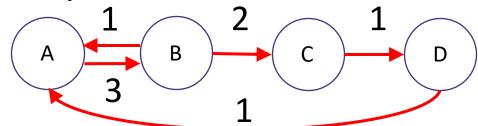
Graphs: Weighted Graphs

- In a weighted graph, each edge has a weight (or cost)
 - Typically, a number (int)
 - Negative weights are possible (but rare)

Kingston 30 Edmonds

Bainbridge 35 Seattle

Bremerton


Clinton

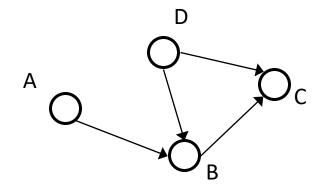
So far, possible graph types:
Undirected Unweighted graphs
Undirected Weighted graphs
Directed Unweighted graphs
Directed Weighted graphs

Any Questions?

Graphs: (Walks) vs Paths vs Cycles

- Walk: Sequence of adjacent vertices
 - e.g., ABA, ABCD, ABC, etc.

- Path (or Simple Path): A walk that doesn't repeat a vertex
 - e.g., ABCD, ABC, AB
 - NOT ABA
- Cycle: A walk that doesn't repeat a vertex except the first and last vertex
 - e.g., ABCDA
 - NOT ABCD

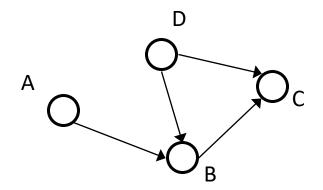

_____ Length: Number of edges in _____

____ Cost: Sum of weights of each edge in ____

Graphs: Paths vs Cycles Example

Is there a path from A to D?

Does the graph contain any cycles?

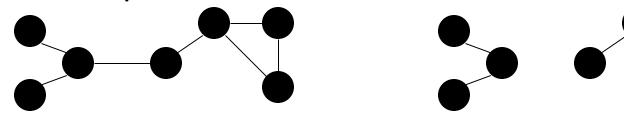

• What if undirected?

Graphs: Paths vs Cycles Example (Soln.)

Is there a path from A to D?

No

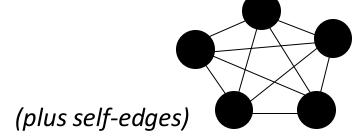
Does the graph contain any cycles? No



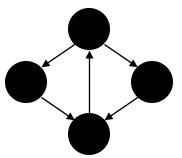
• What if undirected?

Yes, Yes

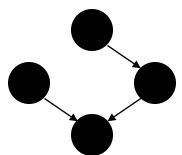
Graphs: Undirected Graph Connectivity


• An undirected graph is connected if for all pairs of vertices (v, u), there exists a path from v to u

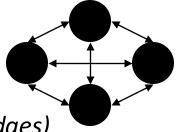
Connected graph


Disconnected graph

• An undirected graph is complete, a.k.a. fully connected if for all pairs of vertices (v, u), there exists an edge from v to u



Graphs: Directed Graph Connectivity


• A directed graph is strongly connected if there is a path from every vertex to every other vertex

• A directed graph is weakly connected if there is a path from every vertex to every other vertex ignoring direction of edges

• A directed graph is complete a.k.a. fully connected if for all pairs of vertices (v, u), there exists an edge from v to u

(plus self-edges)

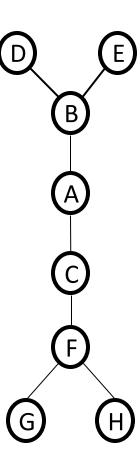
Graphs: Practical Examples

For undirected graphs: connected?

For directed graphs: strongly connected? weakly connected?

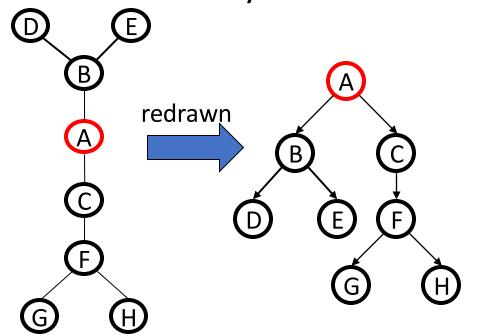
weighted?

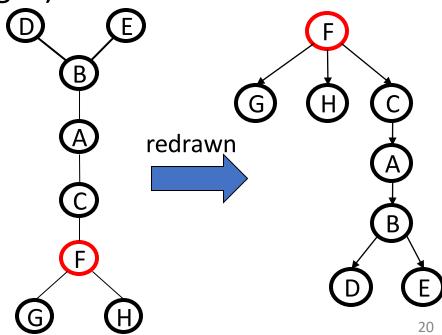
- Web pages with links
- Facebook friends
- Methods in a program that call each other
- Road maps (e.g., Google maps)
- Airline routes
- Course pre-requisites


• ...

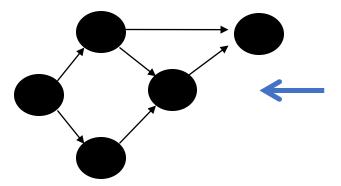
Graphs: Trees

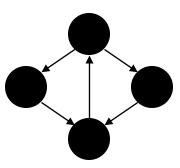
- When talking about graphs, we say a tree is a graph that is:
 - undirected
 - acyclic
 - connected


• So all trees are graphs, but not all graphs are trees


How does this relate to the trees we know and love?...

Graphs: Rooted Trees


- We are more accustomed to rooted trees where:
 - We identify a unique ("special") root
 - We think of edges as directed: parent to children
- Given a tree, once you pick a root, you have a unique rooted tree (just drawn differently and with undirected edges)


Graphs: Directed Acyclic Graphs (DAGs)

- A DAG is a directed graph with no cycles (Acyclic)
 - Every rooted directed tree is a DAG
 - But not every DAG is a rooted directed tree:

Not a rooted directed tree, Has a cycle (in the undirected sense)

- Every DAG is a directed graph
 - But not every directed graph is a DAG:

Graphs: Number of Vertices vs Edges (Math)

- Correct Mathematical Notation:
 - Number of Vertices = $|\{v_1, v_2, ..., v_n\}| = |V|$
 - Number of Edges = $|\{e_1, e_2, ..., e_m\}| = |E|$
- Common Notation: V or E
- Given |V| vertices, what is:
 - Minimum number of Edges?
 - Maximum for undirected?
 - Maximum for directed?

Graphs: Number of Vertices vs Edges (Math)

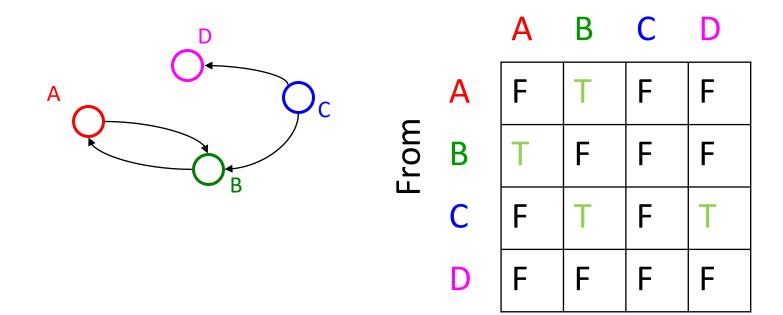
- Correct Mathematical Notation:
 - Number of Vertices = $|\{v_1, v_2, \dots, v_n\}| = |V|$
 - Number of Edges = $|\{e_1, e_2, ..., e_m\}| = |E|$
- Common Notation: V or E
- Given |V| vertices, what is:
 - Minimum number of Edges?
 - ()
 - Maximum for undirected?
 - $\frac{V(V+1)}{2}$ (with self-edges) or $\frac{V(V+1)}{2} V$ (no self-edges)
 - Maximum for directed?
 - V²

Graphs: Sparse vs Dense Graphs

- In a graph,
 - Undirected, $0 \le |E| < |V|^2$
 - Directed: $0 \le |E| \le |V|^2$
- So: $|E| \in \mathcal{O}(|V|^2)$
- Sparse: when $|E| \in \Theta(|V|)$ i.e., "few edges"
- Dense: when $|E| \in \Theta(|V|^2)$ i.e., "many edges"

Sparse		Dense
0 edges	$\mathcal{O}(V)$ edges	$O(V ^2)$ edges

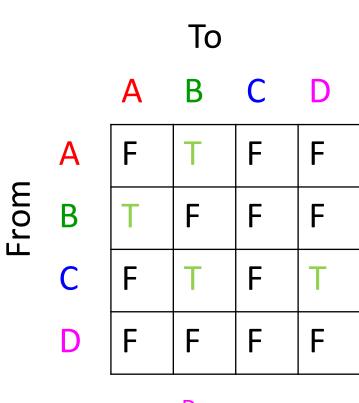
Any Questions?

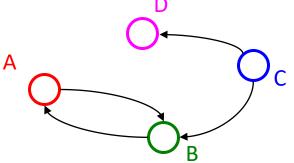

Graphs: The Data Structure

- Many data structures, tradeoffs
- Exploits graph properties
- Common operations:
 - "Is (v, u) an edge?"
 - "What are the neighbors of v?"

- Two standards:
 - Adjacency Matrix
 - Adjacency List

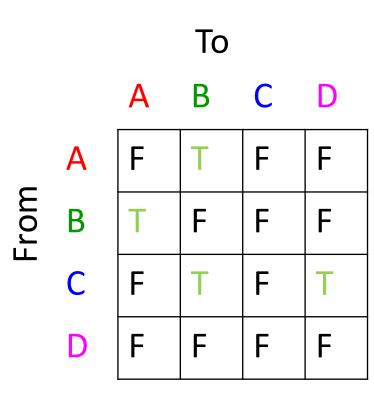
Graphs: Adjacency Matrix

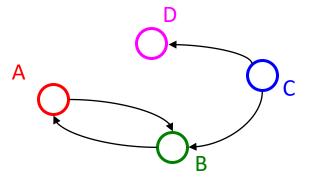

- Assign each node a number from 0 to |V|-1
- A |V| by |V| matrix M (2-D array) of Booleans
- M[v] [u] ==true means there is an edge from v to u
 To



Any Questions?

Adjacency Matrix: Properties


- Running time to:
 - Get a vertex's out-bound edges:
 - Get a vertex's in-bound edges:
 - Decide if some edge exists:
 - Insert an edge:
 - Delete an edge:
- Space requirements:
- Better for Sparse or Dense Graphs?

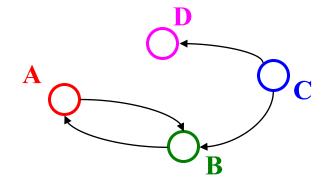


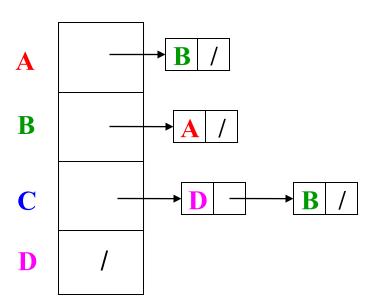
Adjacency Matrix: Properties (Soln.)

- Running time to:
 - Get a vertex's out-bound edges: $\mathcal{O}(|V|)$
 - Get a vertex's in-bound edges: $\mathcal{O}(|V|)$
 - Decide if some edge exists: O(1)
 - Insert an edge: O(1)
 - Delete an edge: O(1)
- Space requirements: $\mathcal{O}(|V|^2)$
- Better for Sparse or Dense Graphs? Dense

Adjacency Matrix: Adaptability

How does it work for undirected graph?

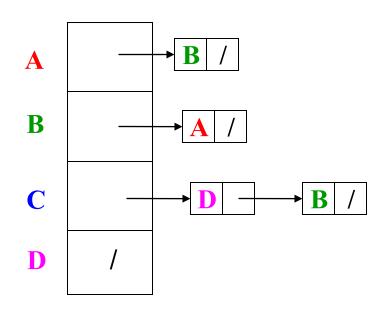

How does it work for weighted graph?

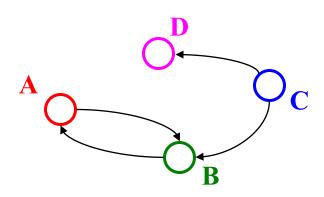

Adjacency Matrix: Adaptability (Soln.)

- How does it work for undirected graph?
 - Symmetric in diagonal axis (e.g., M[v][u] == true, then M[u][v] == true)
- How does it work for weighted graph?
 - Instead of boolean, use integer
 - "not an edge" can be 0, -1, infinite, etc.

Graphs: Adjacency List

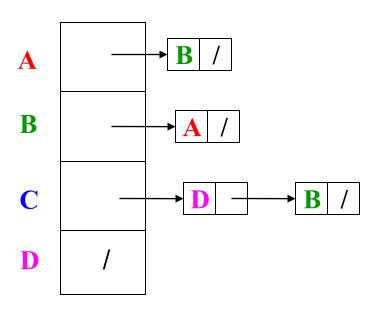
- Assign each node a number from 0 to |V|-1
- An array arr of length |V| where arr[i] stores a (linked) list of all adjacent vertices

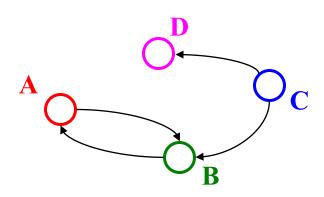




Any Questions?

Adjacency List: Properties


- Running time to:
 - Get a vertex's out-bound edges:
 - Get a vertex's in-bound edges:
 - Decide if some edge exists:
 - Insert an edge:
 - Delete an edge:
- Space requirements:
- Better for Sparse or Dense Graphs?



Adjacency List: Properties (Soln.)

- Running time to:
 - Get a vertex's out-bound edges:
 - O(d), where d is out-degree of vertex
 - Get a vertex's in-bound edges:
 - O(|V| + |E|), note: can keep 2nd "reverse" adjacency list for faster
 - Decide if some edge exists:
 - O(d), where d is out-degree of source vertex
 - Insert an edge:
 - $\mathcal{O}(1)$, unless you need to check for duplicates then $\mathcal{O}(d)$
 - Delete an edge:
 - *O*(*d*)
- Space requirements: O(|V| + |E|)
- Better for Sparse or Dense Graphs? Sparse

Any Questions?

Matrix vs List, which is better?

- Graphs are often sparse:
 - Streets form grids
 - every corner is not connected to every other corner
 - Airlines rarely fly to all possible cities
 - or if they do it is to/from a hub rather than directly to/from all small cities to other small cities

- Adjacency lists should generally be your default choice
 - Slower performance compensated by greater space savings