
Lecture 11: Comparison Sorts

CSE 332: Data Structures & Parallelism

Yafqa Khan

Summer 2025

1

Announcements

• EX04: AVL
• Due Next Monday

• Exam 1 next Friday

2

Today

• Sorting Algorithm 1: Insertion Sort

• Sorting Algorithm 2: Selection Sort

• Sorting Algorithm 3: Heap Sort
• In-place optimization

• Sorting Algorithm 4: Merge Sort
• Merging

• Sorting Algorithm 5: Quick Sort
• Picking a pivot

• Partioning

• Comparison Sorting Lower Bound
3

Sorting: An introduction

• Why sorting?
• Want to know "all the data items" in some order

• Very common to need data sorted somehow
• Alphabetical list of people

• Population list of countries

• Search engine results by relevance

• Binary search

• Why many ways of sorting?
• Tradeoffs...

• Asymptotic vs Constant Factors

• Different properties

4

Sorting: Goals (Terminology)

1. Stable
• Maybe in the case of ties we should preserve the original ordering

• One way to sort twice, Ex: Sort movies by year, then for ties, alphabetically

2. In-Place (Space)
• No more than 𝒪 1 "auxiliary space"

• Only use original array by swapping elements

3. Fast (Time)
• Typically, 𝒪 𝑛 log 𝑛

• Or good constant factors

5

Sorting: The Big Picture

Simple

algorithms:

𝒪 𝑛2

Fancier

algorithms:

𝒪 𝑛 log 𝑛

Comparison

lower bound:

Ω 𝑛 log 𝑛

Specialized

algorithms:

𝒪 𝑛

Handling

huge data

sets

Insertion sort

Selection sort

…

Heap sort

Merge sort

Quick sort (avg)

…

Bucket sort

Radix sort

External

sorting

6

Sorting Algorithm 1: Insertion Sort

Intuition: Given a hand of cards, sort it

Algorithm:

• Maintain a sorted subarray
1. Sort first 2 elements

2. Insert 3rd element in order

3. Insert 4th element in order

4. ...

7

Insertion Sort: Pseudocode

insertionSort(int[] arr){

 for(i=0; i < arr.length; i++){

 int curr = i

 while(arr[curr-1] > arr[curr]){

 swap(arr[curr-1], arr[curr])

 curr -= 1

 }

 }

}
8

Insertion Sort: Visual
0 1 2 3 4 5 6 7 8 9

2 3 6 7 5 8 4 10 2 8

Sorted Items Unsorted Items
Current Item

9

Insertion Sort: Analysis

1. Stable?
• Yes!

2. In-Place?
• Yes!

3. Fast?
• No :((in terms of asymptotics)

• Best Case: 𝒪 𝑛

• Worst Case: 𝒪 𝑛2

• Good constant factors!

10

Today

• Sorting Algorithm 1: Insertion Sort

• Sorting Algorithm 2: Selection Sort

• Sorting Algorithm 3: Heap Sort
• In-place optimization

• Sorting Algorithm 4: Merge Sort
• Merging

• Sorting Algorithm 5: Quick Sort
• Picking a pivot

• Partioning

• Comparison Sorting Lower Bound
11

Sorting Algorithm 2: Selection Sort

Algorithm:

• Maintain a sorted subarray
1. Find the smallest element remaining in the unsorted subarray

2. Append it at the end of the sorted part

3. Repeat

12

Selection Sort: Visual
0 1 2 3 4 5 6 7 8 9

2 3 6 7 18 10 14 9 11 15

Sorted Items Unsorted Items
Current Index

13

Selection Sort: Analysis

1. Stable?
• No :((e.g., try [21, 22, 1])

2. In-Place?
• Yes!

3. Fast?
• No :((in terms of asymptotics)

• Best Case: 𝒪 𝑛2

• Worse than insertion sort when array is almost fully sorted

• Worst Case: 𝒪 𝑛2

• Good constant factors!

14

Sorting Algorithm null: Bubble Sort

• We pretend it doesn't exist

• Bad asymptotic complexity: 𝒪 𝑛2

• Bad constant factors

• Literally should never be used
• Anything it is good at, another algorithm is at least good at

• IDK WHY THE INTERNET LIKES USING IT

15

Any Questions?

16

Today

• Sorting Algorithm 1: Insertion Sort

• Sorting Algorithm 2: Selection Sort

• Sorting Algorithm 3: Heap Sort
• In-place optimization

• Sorting Algorithm 4: Merge Sort
• Merging

• Sorting Algorithm 5: Quick Sort
• Picking a pivot

• Partioning

• Comparison Sorting Lower Bound
17

Sorting Algorithm 3: Heap Sort

Intuition: Use a heap

Algorithm:

1. Put all elements into a heap (e.g., with buildHeap)

2. Remove elements one by one and put back into the array

18

Heap Sort (unoptimized): Pseudocode

heapSort(int[] arr){

 heap = buildHeap(arr)

 for(i=0; i < arr.length; i++){

 arr[i] = heap.deleteMin()

 }

}

19

(Max) Heap Sort: In-place Optimization

• Treat the initial array as a heap (via buildHeap)

• When you delete the ith element, put it at arr[n-i] (the back)
• It’s not part of the heap anymore!

8 5 7 1 2 3 1 9 9 10

Sorted Part(Unsorted) Heap Part

arr[n-i] = deleteMax()

Sorted PartHeap Part

7 5 1 1 2 3 8 9 9 10

20

Any Questions?

21

Heap Sort: Analysis

1. Stable?
No, no guarantees on which key comes first

• Technically it can be but it makes it not in-place (we don't talk about this).

2. In-Place?
• Yes!

3. Fast?
• Yes! (in terms of asymptotics)

• Best Case: 𝒪 𝑛 log 𝑛

• Worst Case: 𝒪 𝑛 log 𝑛

• Worse constant factors...
• Think: have to maintain Heap, using buildHeap, etc.

22

Sorting Algorithm null: AVL Sort

• We pretend it doesn't exist

• Idea 𝒪 𝑛 log 𝑛 :
• insert all elements into some balanced tree, 𝒪 𝑛 log 𝑛

• in-order traversal, 𝒪 𝑛

• Not in-place

• Worse constant factors

• Heap Sort is just better...

23

Today

• Sorting Algorithm 1: Insertion Sort

• Sorting Algorithm 2: Selection Sort

• Sorting Algorithm 3: Heap Sort
• In-place optimization

• Sorting Algorithm 4: Merge Sort
• Merging

• Sorting Algorithm 5: Quick Sort
• Picking a pivot

• Partioning

• Comparison Sorting Lower Bound
24

Divide and Conquer

Very important technique in algorithm design

1. Divide problems into smaller parts

2. Solve each part independently
• Think: recursion, parallelism (later)

3. Combine each part's solution to produce overall solution

e.g.,

• Sort each half of the array, combine together

• to sort each half, split into halves

• ...

25

Divide and Conquer Sorting

1. Merge Sort
• Sort the left half of the elements (recursively)

• Sort the right half of the elements (recursively)

• Merge the two sorted halves into a sorted whole

2. Quick Sort
• Divide elements into those less-than pivot and those greater-than pivot

• Sort the two divisions (recursively on each)

• Merge as [sorted-less-than then pivot then sorted-greater-than]

26

Sorting Algorithm 4: Merge Sort

• Algorithm, (recursively) sort from position lo to position hi:
1. If lo to hi is 1 element long,

1. Sorted! Because its 1 element...

2. Else, split into halves:
1. Sort from lo to (hi+lo)/2 (lo to the middle)

2. Sort from (hi+lo)/2 to hi

3. Merge the two halves together

• How to merge 2 sorted halves?
• 𝒪 𝑛 time but needs auxiliary space...

8 2 9 4 5 3 1 6

hi

0 1 2 3 4 5 6 7

lo

27

Merge Sort: Merging Visualization

Start with: 8 2 9 4 5 3 1 6

After we return from
left and right recursive calls
(pretend it works for now)

2 4 8 9 1 3 5 6

Merge:

Use 3 pointers

and 1 more array

(After merge,
copy back to
original array)

aux

28

Merge Sort: Merging Visualization (Soln.)
Start with: 8 2 9 4 5 3 1 6

After recursion:

(not magic ☺)
2 4 8 9 1 3 5 6

Merge:

Use 3 “fingers”

and 1 more array

1

(After merge,
copy back to
original array)

29

Merge Sort: Merging Visualization (Soln.)
Start with: 8 2 9 4 5 3 1 6

After recursion:

(not magic ☺)
2 4 8 9 1 3 5 6

Merge:

Use 3 “fingers”

and 1 more array

1 2

(After merge,
copy back to
original array)

30

Merge Sort: Merging Visualization (Soln.)
Start with: 8 2 9 4 5 3 1 6

After recursion:

(not magic ☺)
2 4 8 9 1 3 5 6

Merge:

Use 3 “fingers”

and 1 more array

1 2 3

(After merge,
copy back to
original array)

31

Merge Sort: Merging Visualization (Soln.)
Start with: 8 2 9 4 5 3 1 6

After recursion:

(not magic ☺)
2 4 8 9 1 3 5 6

Merge:

Use 3 “fingers”

and 1 more array

1 2 3 4

(After merge,
copy back to
original array)

32

Merge Sort: Merging Visualization (Soln.)
Start with: 8 2 9 4 5 3 1 6

After recursion:

(not magic ☺)
2 4 8 9 1 3 5 6

Merge:

Use 3 “fingers”

and 1 more array

1 2 3 4 5

(After merge,
copy back to
original array)

33

Merge Sort: Merging Visualization (Soln.)
Start with: 8 2 9 4 5 3 1 6

After recursion:

(not magic ☺)
2 4 8 9 1 3 5 6

Merge:

Use 3 “fingers”

and 1 more array

1 2 3 4 5 6

(After merge,
copy back to
original array)

34

Merge Sort: Merging Visualization (Soln.)
Start with: 8 2 9 4 5 3 1 6

After recursion:

(not magic ☺)
2 4 8 9 1 3 5 6

Merge:

Use 3 “fingers”

and 1 more array

1 2 3 4 5 6 8

(After merge,
copy back to
original array)

35

Merge Sort: Merging Visualization (Soln.)
Start with: 8 2 9 4 5 3 1 6

After recursion:

(not magic ☺)
2 4 8 9 1 3 5 6

Merge:

Use 3 “fingers”

and 1 more array

1 2 3 4 5 6 8 9

(After merge,
copy back to
original array)

36

Merge Sort: Merging Visualization (Soln.)
Start with: 8 2 9 4 5 3 1 6

After recursion:

(not magic ☺)
2 4 8 9 1 3 5 6

Merge:

Use 3 “fingers”

and 1 more array

1 2 3 4 5 6 8 9

1 2 3 4 5 6 8 9

37

Merge Sort: Splitting Visualization

8 2 9 4 5 3 1 6

8 2 1 69 4 5 3

8 2

Divide

Divide

Divide

1 element

8 2 9 4 5 3 1 6

9 4 5 3 1 6

38

Merge Sort: Splitting Visualization

8 2 9 4 5 3 1 6

8 2 1 69 4 5 3

8 2

Divide

Divide

Divide

1 element

8 2 9 4 5 3 1 6

9 4 5 3 1 6

2 8

2 4 8 9

1 2 3 4 5 6 8 9

Merge

Merge

Merge

4 9 3 5 1 6

1 3 5 6

When a recursive call ends, it’s sub-arrays are each in order; just
need to merge them in order together

39

Merge Sort: Copy Array Optimization
First recurse down to lists of size 1

As we return from the recursion, switch off arrays

Merge by 1

Merge by 2

Merge by 4

Merge by 8

Merge by 16

Copy if Needed

40

Any Questions?

41

Merge Sort: Analysis

1. Stable?
• Yes! Just prioritize left array

2. In-Place?
• No :(𝒪 𝑛 space

3. Fast?
• Yes! (in terms of asymptotics)

• Best Case: 𝒪 𝑛 log 𝑛

• Worst Case: 𝒪 𝑛 log 𝑛 Why?

• Worse constant factors...
• Think: recursive splitting, merging, etc.

42

Merge Sort: Runtime Analysis

Recurrence Relation:

𝑇 𝑛 = ቐ

𝑐0

2𝑇
𝑛

2
+ 𝑐1𝑛 + 𝑐2

for 𝑛 = 1
otherwise

Solving:
𝑇 𝑛 = 2log 𝑛𝑇 1 + 𝑛 log 𝑛 = 𝑛 + 𝑛 log 𝑛 ∈ 𝒪 𝑛 log 𝑛

43

Today

• Sorting Algorithm 1: Insertion Sort

• Sorting Algorithm 2: Selection Sort

• Sorting Algorithm 3: Heap Sort
• In-place optimization

• Sorting Algorithm 4: Merge Sort
• Merging

• Sorting Algorithm 5: Quick Sort
• Picking a pivot

• Partioning

• Comparison Sorting Lower Bound
44

Quick Sort Warning

There are millions of versions of Quick Sort on the internet. Use ours.

45

Sorting Algorithm 5: Quick Sort

• Algorithm:
1. Pick a pivot element

• Hopefully the ~median element

• Important, performance based on this

2. Divide elements into 2 "halves":
A. less-than pivot

B. the pivot

C. greater-than pivot

3. Recursively sort A and C

4. Sorted output: [sorted-less-than then pivot then sorted-greater-than]

46

Quick Sort: Visualization 1

13
81

92

43

65

31 57

26

75
0

S select pivot value

13 8192

43 65
31

5726

750S1 S2
partition S

13 4331 57260

S1
81 927565

S2

QuickSort(S1) and

QuickSort(S2)

13 4331 57260 65 81 9275S Presto! S is sorted

[Weiss]

47

Quick Sort: Visualization 2

What's a bad pivot?

2 4 3 1 8 9 6

2 1 94 6

2

1 2

1 2 3 4

1 2 3 4 5 6 8 9

Conquer

Conquer

Conquer

Divide

Divide

Divide

1 element

8 2 9 4 5 3 1 6

5

8
3

1

6 8 9

48

Merge Sort vs Quick Sort

2 4 3 1 8 9 6

2 1 94 6

2

1 2

1 2 3 4

1 2 3 4 5 6 8 9

Conquer

Conquer

Conquer

Divide

Divide

Divide

1 element

8 2 9 4 5 3 1 6

5

8
3

1

6 8 9

MergeSort Recursion Tree QuickSort Recursion Tree

49

Quick Sort: Picking a (good) Pivot

1. Option 1: Pick arr[lo] or arr[hi-1]
• Fast to pick but likely worst-case (e.g., arr is sorted)

2. Option 2: Pick random element
• Good. But pseudo-randomness is expensive!

3. Option 3: Median of 3
• e.g., arr[lo], arr[hi-1], arr[(hi+lo)/2]

• Common, tends to work well

arr

lo hi-1

void quicksort(int[] arr, int lo, int hi)

50

Quick Sort: Partitioning Problem

• Problem: Given good pivot, how to split to two?
• e.g., [8, 4, 2, 9, 3, 5, 7] and pivot 5,

• how to split to two - 4, 2, 3 and 8, 9, 7?

• Ideals:
• Fast 𝒪 𝑛 linear time

• In-place

Ideas?

51

Quick Sort: "Hoare" Partitioning Approach

1. Swap pivot with arr[lo] (i.e., move it out of the way)

2. Use 2 pointers l and r, starting at lo+1 and hi-1
• Idea: Move l and r such that:

• arr[l] should be on the right of pivot and arr[r] should be on the left of pivot

 while (l < r)

 if(arr[l] <= pivot) l++

 else if(arr[r] > pivot) r--

 else swap arr[l] and arr[r]

3. Put pivot back in middle (Swap with arr[r])

52

Quick Sort: Example

Start "Hoare" Partition: 3 4 9 1 7 0 5 2 6 8

Move 7, init l and r: 7 4 9 1 3 0 5 2 6 8

l r

Move l and r: 7 4 9 1 3 0 5 2 6 8

l r

Swap arr[l] and arr[r]: 7 4 6 1 3 0 5 2 9 8

l r

Pick pivot 7, median of 3 3 4 9 1 7 0 5 2 6 8

53

Quick Sort: Example (cont.)

After swap: 7 4 6 1 3 0 5 2 9 8

l r

Move l and r: 7 4 6 1 3 0 5 2 9 8

r l

r <= l, move pivot back 7 4 6 1 3 0 5 2 9 8

r l

"Hoare" Partitioned! 2 4 6 1 3 0 5 7 9 8

54

Any Questions?

55

Quick Sort: Analysis

1. Stable?
• No :(

2. In-Place?
• Yes!

3. Fast?
• Yes! (in terms of asymptotics)

• Best Case: 𝒪 𝑛 log 𝑛

• Average Case: 𝒪 𝑛 log 𝑛 (when good pivot)

• Worst Case: 𝒪 𝑛2 Why?

• Worse constant factors...
• Think: recursive splitting, merging, etc.

• In practice: way, way better
56

Quick Sort: Runtime Analysis

Best Case:

𝑇 𝑛 = ቐ

𝑐0

2𝑇
𝑛

2
+ 𝑐1𝑛 + 𝑐2

for 𝑛 = 0 or 1
otherwise

Worst Case:

𝑇 𝑛 = ቊ
𝑐0

𝑇 𝑛 − 1 + 𝑐1𝑛 + 𝑐2

for 𝑛 = 0 or 1
otherwise

Average Case (good pivot):
𝑇 𝑛 ∈ 𝒪 𝑛 log 𝑛

Proof is in the textbook, Weiss 7.7
57

Comparison Sorting: CUTOFF Strategy

58

void sort(int[] arr, int lo, int hi) {

 if(hi – lo < CUTOFF)

 insertionSort(arr,lo,hi); // or Selection Sort

 else
 quickSort(arr,lo,hi) // or Merge Sort, etc.

}

Comparison Sorting: Comparisons

Run-time Stable? In-Place?

Insertion Sort
Best Case: 𝒪 𝑛
Worst Case: 𝒪 𝑛2

Average Case: 𝒪 𝑛2
Stable In-place

Selection Sort 𝒪 𝑛2 Not Stable In-place

Heap Sort 𝒪 𝑛 log 𝑛 Not Stable In-place

Merge Sort 𝒪 𝑛 log 𝑛 Stable Not In-place

Quick Sort
("Hoare" Partition)

Best Case: 𝒪 𝑛 log 𝑛
Worst Case: 𝒪 𝑛2

Average Case: 𝒪 𝑛 log 𝑛
Not Stable In-place

59

Today

• Sorting Algorithm 1: Insertion Sort

• Sorting Algorithm 2: Selection Sort

• Sorting Algorithm 3: Heap Sort
• In-place optimization

• Sorting Algorithm 4: Merge Sort
• Merging

• Sorting Algorithm 5: Quick Sort
• Picking a pivot

• Partioning

• Comparison Sorting Lower Bound
60

Comparison Sorting Lower Bound

We keep hitting 𝒪 𝑛 log 𝑛 in the worst case.

Can we do better?

Or is this 𝒪 𝑛 log 𝑛 pattern a fundamental barrier?

Without more information about our data set, we cannot do better.
• i.e. assume all we know about the input type is that it has a compareTo()

method.

Any sorting algorithm that knows nothing about the input data
type, except how to compare two instances, must take
Ω 𝑛 log 𝑛 time in the worst case.

Comparison Sorting Lower Bound

61

Sorting: The Big Picture

Simple

algorithms:

𝒪 𝑛2

Fancier

algorithms:

𝒪 𝑛 log 𝑛

Comparison

lower bound:

Ω 𝑛 log 𝑛

Specialized

algorithms:

𝒪 𝑛

Handling

huge data

sets

Insertion sort

Selection sort

…

Heap sort

Merge sort

Quick sort (avg)

…

Bucket sort

Radix sort

External

sorting

62

Any Questions?

63

	Slide 1: Lecture 11: Comparison Sorts
	Slide 2: Announcements
	Slide 3: Today
	Slide 4: Sorting: An introduction
	Slide 5: Sorting: Goals (Terminology)
	Slide 6: Sorting: The Big Picture
	Slide 7: Sorting Algorithm 1: Insertion Sort
	Slide 8: Insertion Sort: Pseudocode
	Slide 9: Insertion Sort: Visual
	Slide 10: Insertion Sort: Analysis
	Slide 11: Today
	Slide 12: Sorting Algorithm 2: Selection Sort
	Slide 13: Selection Sort: Visual
	Slide 14: Selection Sort: Analysis
	Slide 15: Sorting Algorithm null: Bubble Sort
	Slide 16: Any Questions?
	Slide 17: Today
	Slide 18: Sorting Algorithm 3: Heap Sort
	Slide 19: Heap Sort (unoptimized): Pseudocode
	Slide 20: (Max) Heap Sort: In-place Optimization
	Slide 21: Any Questions?
	Slide 22: Heap Sort: Analysis
	Slide 23: Sorting Algorithm null: AVL Sort
	Slide 24: Today
	Slide 25: Divide and Conquer
	Slide 26: Divide and Conquer Sorting
	Slide 27: Sorting Algorithm 4: Merge Sort
	Slide 28: Merge Sort: Merging Visualization
	Slide 29: Merge Sort: Merging Visualization (Soln.)
	Slide 30: Merge Sort: Merging Visualization (Soln.)
	Slide 31: Merge Sort: Merging Visualization (Soln.)
	Slide 32: Merge Sort: Merging Visualization (Soln.)
	Slide 33: Merge Sort: Merging Visualization (Soln.)
	Slide 34: Merge Sort: Merging Visualization (Soln.)
	Slide 35: Merge Sort: Merging Visualization (Soln.)
	Slide 36: Merge Sort: Merging Visualization (Soln.)
	Slide 37: Merge Sort: Merging Visualization (Soln.)
	Slide 38: Merge Sort: Splitting Visualization
	Slide 39: Merge Sort: Splitting Visualization
	Slide 40: Merge Sort: Copy Array Optimization
	Slide 41: Any Questions?
	Slide 42: Merge Sort: Analysis
	Slide 43: Merge Sort: Runtime Analysis
	Slide 44: Today
	Slide 45: Quick Sort Warning
	Slide 46: Sorting Algorithm 5: Quick Sort
	Slide 47: Quick Sort: Visualization 1
	Slide 48: Quick Sort: Visualization 2
	Slide 49: Merge Sort vs Quick Sort
	Slide 50: Quick Sort: Picking a (good) Pivot
	Slide 51: Quick Sort: Partitioning Problem
	Slide 52: Quick Sort: "Hoare" Partitioning Approach
	Slide 53: Quick Sort: Example
	Slide 54: Quick Sort: Example (cont.)
	Slide 55: Any Questions?
	Slide 56: Quick Sort: Analysis
	Slide 57: Quick Sort: Runtime Analysis
	Slide 58: Comparison Sorting: CUTOFF Strategy
	Slide 59: Comparison Sorting: Comparisons
	Slide 60: Today
	Slide 61: Comparison Sorting Lower Bound
	Slide 62: Sorting: The Big Picture
	Slide 63: Any Questions?

