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Exercise 9 - Spec 

Exercise 9 Spec (25su)  
 
The objectives of this exercise are  

● Implement a minimum-spanning-tree algorithm 
● Use minimum spanning trees combined with breadth-first-search to solve a 

clustering problem 

Overview 
This exercise consists of the following parts: 

1. Use given data in order to construct a graph using an adjacency list representation. 
2. Implement Prim’s algorithm for finding minimum spanning trees. 
3. Use the result of Prim’s algorithm to solve a clustering problem by deleting edges from 

the MST, then checking which nodes are connected. 
 

 

 



 

Motivating Application: Unsupervised Learning 
There are two primary categories of machine learning tactics. Supervised learning involves 
using labeled data to train a model that can later apply labels to new data. For example, 
suppose I had a bunch of photos of Labradors (a dog breed) that I wanted to separate into black 
labs, yellow labs, and chocolate labs (different varieties of Labradors different only by coat 
color). If I manually pre-labelled these photos with the correct variety then I could use them to 
train a supervised learning algorithm to label future photos with the correct variety of Labrador. 
 
An unsupervised model, on the other hand, does not require any pre-labelling of the training 
data. Instead, unsupervised models attempt to discern patterns in the training data by looking 
only at the data itself. For example, we might be able to plot the photos of Labradors as points 
in some cartesian space (as a simple example, we might have a 3-dimensional point per picture 
which represents the average RGB values of the image). With these points, an unsupervised 
model might identify clusters of points that are similar to one another and conclude that points in 
the same cluster must be the same Labrador variety. The advantage to these "clustering" 
algorithms is that we do not need to take the effort to pre-label, one disadvantage is that it does 
not tell us which cluster represents which variety. 
 

 



 

Problem Statement 
The most commonly used clustering algorithm is called k-means clustering. Given a collection of 
points and a number of clusters k, the k-means clustering algorithm will split those points into k 
collections such that points which share a cluster are those which are nearest to the same 
reference point. For this assignment we will be doing a different form of clustering that I will call 
k-margin clustering. For this algorithm, we will be given a collection of items and an integer k. 
We will then split the items into k collections in such a way to maximize the “gap” between the 
closest two clusters. We define the “gap” size between two clusters to be the closest pair of 
items between them. In other words, we want to split our collection into k subsets such that we 
have maximized the closest pair of points across those subsets. 
 
This task may seem daunting at first, but minimum spanning trees will help! To begin with, we 
will represent our collection of items as a 2-d array, such that cell i,j of this array represents 
the distance from item i to item j. Effectively, this 2-d array can be considered as an 
undirected, weighted, complete graph. So we now have a graph where all of the items are 
nodes and the weights of the edges between nodes represent their distance from each other. 
From here, we will calculate a minimum spanning tree of this graph. This will be helpful 
because: 

1. If we consider any cluster in the graph, the edge which connects that cluster to its 
closest neighboring cluster must be an edge in a minimum spanning tree of the graph. 
Suppose that the cost of the clustering is the weight of edge (x, y). This follows from the 
cut theorem of MSTs. We will define a cut in the graph such that our cluster is one side 
of the cut and all other nodes are on the other side. In this case, any edge going from 
this cluster to another cluster will cross the cut. The closest pair will then be the lightest 
edge which crosses the cut, and therefore is part of a minimum spanning tree! 

2. Being a spanning tree, a minimum spanning tree is connected and acyclic and contains 
n − 1 edges. If any edge is removed then the graph is no longer connected, instead it will 
have two separate components. If any two edges are removed then it will have three 
separate components. So if we remove k-1 edges then we will have k separate 
components. 

 
Combining these two observations above, we get a clustering algorithm. 

● Our input will be an n x n array of doubles, representing the pairwise distances of all our 
items (which we’ll just consider to be ints 0 through n-1, so the indices are the items) and 
an int k for the number of clusters 

● We will construct a graph using this n x n array. 
● Next we’ll construct a minimum spanning tree on that graph 
● Then we remove the k-1 heaviest edges from the MST(the weight of the last edge 

removed will be the distance between the closest pair of clusters) 
● Finally we identify which items are in which cluster by checking which items are 

connected to each other using the remaining edges of the MST (e.g. by using a 
breadth-first search). 

Your task for this assignment is to implement that algorithm above. 

https://en.wikipedia.org/wiki/K-means_clustering
https://en.wikipedia.org/wiki/Minimum_spanning_tree#Cut_property
https://en.wikipedia.org/wiki/Cut_(graph_theory)


 

 
Input Format: For this assignment, input will be encoded in txt files. Supposing that each test 
consists of n items, the files will contain n+2 lines as follows: 

● The first line contains the value of k, i.e. the number of clusters to break the items into 
● The next line contains the value n (the number of items) 
● The remaining n lines contain a space-separated list of doubles which indicate the 

distances between each pair of items 
For example, consider a file with its contents as shown below. 
 

 
 
 
 
 
 
 
 

This file indicates that we will be splitting 5 items into k clusters. When doing so, item 0 is 
distance 18 from item 1, item 2 is distance 15 away from item 3, etc. 
 
In this case the optimal clustering would be for the first cluster to contain items 0 and 4, the 
second to contain items 2 and 3, and the third cluster to contain item 1. To see the cost of this 
clustering we look at the closest pair of items for each pair of clusters, and then save the 
smallest. So in this case the cost of the clustering would be 15. The following explains why: 

● The distance between the first cluster and the second is 15 because the closest pair of 
points that crosses these clusters is items 4 and 3 which have distance 15. 

● The distance between the first cluster and the third is 18 because the closest pair of 
points that crosses these clusters is items 0 and 1 which have distance 18. 

● The distance between the second cluster and the third is 30 because the closest pair of 
points that crosses these clusters is items 1 and 3 which have distance 30. 

● The overall cost of the clustering is the smallest of these distances, and so it is 15. 
 
 
 

 

3 
5 
0 18 21 23 5 
18 0 54 30 31 
21 54 0 15 32 
23 30 15 0 15 
5 31 32 15 0 



 

Implementation Guidelines 
Your implementations in this assignment must follow these guidelines 

● You may not add any import statements beyond those that are already present (except 
for where expressly permitted in this spec). This course is about learning the mechanics 
of various data structures so that we know how to use them effectively, choose among 
them, and modify them as needed. Java has built-in implementations of many data 
structures that we will discuss, in general you should not use them. 

● Do not have any package declarations in the code that you submit. The Gradescope 
autograder may not be able to run your code if it does. 

● Remove all print statements from your code before submitting. These could interfere with 
the Gradescope autograder (mostly because printing consumes a lot of computing time). 

● Your code will be evaluated by the gradescope autograder to assess correctness. It will 
be evaluated by a human to verify running time. Please write your code to be readable. 
This means adding comments to your methods and removing unused code (including 
“commented out” code). 

 
For this assignment, there is partial credit for passing only a few test cases. For example, if 
you failed on any test case on Cluster Cost, you will receive partial credits corresponding to 
that test case. We’ve provided all 10 files that we will be testing on. Each file is worth 5 points (2 
for Cluster Cost and 3 for Cluster). Therefore, there are 50 points on autograder, plus 20 points 
on manual inspection. Meanwhile, you will be able to see the details on the testcases you failed. 

 



 

Provided Code 
Several java classes have been provided for you in this zip file. Here is a description of each. 

● Client 

○ This class contains the main method, which does the following: 
■ Reads the input file named in the field testFileName 
■ Parses the file and converts all the information into a 2-d array along with 

an integer variable k. 
■ Calls the constructor that you will implement, providing the array and k as 

input 
■ Prints the cost of the clustering found. 

○ Do not submit this file 
● WeightedEdge 

○ These objects will be used to represent an edge in the graph (if you choose to 
use an adjacency list representation, which I think is easier). Its primary role is 
just to encapsulate 3 fields: 

■ source: the source node of the edge 
■ destination: the destination node of the edge 
■ weight: the weight of the edge 

○ You are not required to use this class, but I found it very helpful! 
○ Do not submit this file 

● Clusterer 

○ This is the file that you will be modifying for this assignment. Your goal is to 
implement the constructor, which must calculate the clusters for the given 2-d 
array of distances and integer k. To guide you through this: 

■ In part 1 you will convert the 2-d array into an adjacency list 
representation (you’re welcome to use the array itself as an adjacency 
matrix if you prefer, but I find the adjacency list easier to work with) 

■ In part 2 you will implement Prim’s algorithm to compute a MST for this 
graph 

■ In part 3 you will remove edges from the minimum spanning tree, then 
check which nodes are connected to each other to identify the clusters. 

○ You will submit this file to Gradescope 
● Various text files (test cases that we will be running on) 

○ specExample.txt 

■ The file described above, The cost of the clustering should be 15.0 
○ 2clusters500points.txt 

■ The cost of this clustering should be 1703083.0 
○ 3clusters10points.txt 

■ The cost of this clustering should be 119.0 
○ 5clusters20points.txt 

■ The cost of this clustering should be 620.0 
○ 5clusters100points.txt 

■ The cost of this clustering should be 37821.0 

https://courses.cs.washington.edu/courses/cse332/25su/exercises/ex9.zip


 

○ 10clusters10points.txt 

■ The cost of this clustering should be 22.0 
○ 13clusters50points.txt 

■ The cost of this clustering should be 4248.0 
○ 20clusters1000points.txt 

■ The cost of this clustering should be 4249168.0 
○ 11clusters121points.txt 

■ The cost of this clustering should be 39360.0 
○ 35clusters35points.txt 

■ The cost of this clustering should be 57.0 

Not Provided Code that you might decide to use: 
● BinaryMinHeap 

○ You implemented this file as part of Exercise 2. It implements a priority queue, 
which is one of the data structures you need for Prim’s Algorithm. See the notes 
at the bottom of Part 2.  

○ If you wish to use this code, you will submit this file to Gradescope. 
● MyPriorityQueue 

○ This was a provided file in Exercise 2 as an interface for the BinaryMinHeap and 
BinaryMaxHeap you implemented.  

○ If you decide to use BinaryMinHeap include this code in your local directory.  
○ Do not submit this file (regardless of whether you’re using your own priority 

queue or Java’s). 
● Pair 

○ This was a provided file in Exercise 2 as the object you will be using in the 
BinaryMinHeap. 

○ You may wish to use this file so that you can use BinaryMinHeap. 
○ Do not submit this file (regardless of whether you’re using your own priority 

queue or Java’s).  



 

Part 1: Making the graph 
For this part you will build a graph out of the contents of the test files. The main method in Client 
reads the text file, then provides its contents as arguments to your constructor. These 
arguments are: 

● distances: a 2-d array of doubles with the property that cell i,j contains the distance 
between items i and j. You may assume that all distances are positive, that cell i,j 
matches cell j,i, and that every cell i,i is 0. 

● k: the number of clusters to break our data into 
There are several ways to implement the constructor, but the way I recommend is to build an 
adjacency list representation of the graph by making a list of lists of WeightedEdge objects. In 
this case we have a complete graph, meaning that an adjacency list does not have any space 
benefit over an adjacency matrix, nor will it have any time benefit. It’s also not going to be 
asymptotically worse by either metric, though. In my opinion, an adjacency list is easier to use 
because it allows for more readable code. If you prefer to use an adjacency matrix, though, I 
support your decision! 

Part 2: Prim’s algorithm 
For this part you will implement Prim’s algorithm for finding a minimum spanning tree. I 
recommend following the pseudocode presented in class/section. You’re welcome to use any 
list or priority queue data structures that you would like from java.util. I recommend that you use 
this algorithm to produce a second adjacency list to represent just the minimum spanning tree. 
That is, you will produce a new graph with the same nodes as the original, but there will be only 
the V-1 edges included in the minimum spanning tree. Keep in mind that this graph should be 
undirected.  
 
Note that the Prim’s algorithm shown in section and lecture uses the function 
PriorityQueue.updatePriority(node) which is not a java.util function. We recommend you use 
one of the 3 following ways to get around this issue: 

1. Add edges to the priority queue instead of nodes; but note in this case, when you 
remove an edge from the priority queue, you’ll need to check if that edge still connects 
not-yet-connected vertices (i.e., that it doesn’t create a cycle). 

2. Allow duplicates of vertices to be added to the priority queue (this is actually functionally 
equivalent to 1); but note in this case, when you remove a vertex, you’ll need to make 
sure you haven’t already processed that vertex. 

3. Import/use the Priority queue you implemented in Exercise 2. You implemented 
updatePriority, so you can keep your code more similar to the pseudocode. In this case, 
you’ll need to include file BinaryMinHeap.java when you upload to Gradescope. Of 
course, any bugs in your Exercise 2 code could lead to errors in this project. If you 
decide to use this approach, we will re-run the exercise 2 tests to do a basic check of 
your priority queue, but be on the lookout for subtle/uncaught bugs in that code that have 
an impact on this algorithm. If you decide to upload BinaryMinHeap.java and it fails the 
exercise 2 tests, then the MST tests will not be run. We strongly recommend that you 



 

upload the BinaryMinHeap.java to Gradescope for a sanity check even before you 
start implementing the actual logic in Clusterer.java. 

 
Your implementation of Prim's algorithm must obey the O(E log V) bound described in lecture. 
Properly implemented, any of the above options can meet this bound because Theta(log V) = 
Theta(log E) (since E <= V^2 and log (V^2) = 2 log V by log rules).  
Note that calling remove(Object o) on the Java.util PriorityQueue is unlikely to let you meet 
this bound. It runs in O(n) time when it has n elements (unlike your priority queue, which can do 
that operation faster due to maintaining the itemToIndex dictionary). 

Part 3: Clustering 
Now we will use the minimum spanning tree to produce the clusters. The first step is to identify 
the k-1 largest edges used in the minimum spanning tree. Then, remove them! When doing 
these steps, remember that every edge appears twice in an adjacency list representation of an 
undirected graph. Use the weight of the lowest-weight edge you removed as the value of the 
cost field of the object. 
 
Once you’ve removed these k-1 edges you can identify which integers belong to which cluster. 
To do this, implement a breadth first search. Do not implement depth first search. You can start 
your breadth-first search from an arbitrary node, then all nodes visited from that one will belong 
to the same cluster. Then repeat a breadth first search on all nodes not yet visited by the 
previous searches. You can then assign the list of lists of connected nodes as the cluster field. 
 
This is the last thing to implement for this assignment! Once you’ve done this, verify correctness 
by trying out each of the txt files provided to make sure the cost is correct. Because there will be 
several clusterings of the same cost, the easiest way to verify your cluster assignment is to 
check every item with every item in all the other clusters, making sure that the distance never 
exceeds the cost. We don’t provide the code to do this, but the autograder will be checking this. 
 
The big-O running time of the clustering portion of the code (excluding the Prim’s call) should be 
at worst O(E log V). That is, the overall running time should be dominated by the time to call 
Prim’s.  
The implementation we describe here can be done in time O(V log V) (since there are only V-1 
edges in a minimum spanning tree), but we’ll only check that you hit O(E log V) or better.  
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