
CSE 332: Data Structures and Parallelism 
 

Exercise 4 - Spec 

Exercise 4 Spec (25su) 
 
The objectives of this exercise are  

● Identify the relationships between binary search trees and AVL trees by 
implementing AVL trees as a subclass of binary search trees (and thereby 
inheriting methods whenever possible). 

● Develop familiarity with the AVLTree data structure by implementing it. In 
particular: understanding what information needs to be maintained in order 
to preserve the structure property (height of subtrees differs by 0 or 1), 
using that information to correctly identify to perform rotation operations. 

● Highlight the advantages of using an ordered dictionary data structure (like 
a binary search tree) by using one to implement a new data structure 

Overview 
This exercise consists of the following parts: 

1. Complete an AVL tree data structure by implementing the insert operation 
2. Write operations findNextKey and findPrevKey, which leverage the ordering of binary 

search trees and are instrumental in the next part. 
3. Complete a RangeTree data structure which is used to maintain a collection of 

non-overlapping ranges of real numbers. 
Note that parts 1 and 2 can be attempted in any order. Part 3 requires part 2 to implement the 
correct behavior, but will need part 1 to satisfy the running time requirements. 
 

 

 



 

Motivation: Event Scheduling 
By the time we are finished with this assignment, we will have completed three data structures: 
binary search tree, AVL tree, and range tree. This last data structure, the range tree, will be 
used for storing ranges of numbers with the property that no ranges within the data structure 
may overlap. This data structure could be used for several applications, but for now, let’s just 
focus on one: event scheduling. 
 
Suppose we were responsible for renting out an event space. This event space can host at 
most one event at a time, so as we fill out our schedule, we will need to avoid booking two 
events that overlap. Our events will be represented by a start time and an end time. Two ranges 
conflict if the start time of one falls between the start and end times of another (it may be worth 
pausing here to convince yourself that there are no other cases). The range tree data structure 
will allow us to efficiently check whether a potential event has a conflict with any of the 
already-booked events, and if it doesn’t, to add that event to the data structure. 
 
We will achieve efficiency in this data structure by using the ordering property of binary search 
trees. The order property of binary search trees (all items to the left of a key have smaller keys, 
and all items to the right have larger keys) will enable an easy way to check for conflicts among 
our events. 
 
In case you’re interested, here are some other applications of this data structure: 

- Scheduling jobs on a cloud computer 
- Collision detection in graphics/physics engines (this would likely require a 2d or 3d 

analog to this data structure, I encourage you to think through what that might look like 
after completing the assignment!) 

- Union of ranges 
- Instead of maintaining a collection of disjoint ranges and refusing to insert 

conflicting ranges, we could merge overlapping ranges in our data structure. This 
could be useful for something like calculating line-of-sight in graphics.  



 

Implementation Guidelines 
 
Your implementations in this assignment must follow these guidelines 

● You may not add any import statements beyond those that are already present (except 
for where expressly permitted in this spec, such as when using an iterative approach for 
AVL insertion in Part 1). This course is about learning the mechanics of various data 
structures so that we know how to use them effectively, choose among them, and modify 
them as needed. Java has built-in implementations of many data structures that we will 
discuss. In general, you should not use them. 

● Do not have any package declarations in the code that you submit. The Gradescope 
autograder may not be able to run your code if it does. 

● Remove all print statements from your code before submitting. These could interfere with 
the Gradescope autograder (mostly because printing consumes a lot of computing time). 

● Your code will be evaluated by the Gradescope autograder to assess correctness. It will 
be evaluated by a human to verify the running time. Please write your code to be 
readable. This means adding comments to your methods and removing unused code 
(including “commented out” code). 

 
For this assignment, there is partial credit for passing only a few test cases. For example, if 
you failed on any test case on FindPrevKey, you will receive partial credit corresponding to that 
test case. AVLTree is worth 30 points, FindPrevKey, FindNextKey, and RangeTree are all 
worth 15 points. There are still 5 points of manual inspection on all three classes except the 
AVLTree, which is worth more (10 points); thus, there are 75 points of autograder and 25 points 
of manual inspection. Meanwhile, you will be able to see the details on the testcases you failed, 
and there are no hidden tests on this assignment.  

 



 

Provided Code 
Several Java classes have been provided for you in the zip file. Here is a description of each. 

● OrderedDeletelessDictionary 

○ A dictionary interface. This differs from the dictionary ADT described in class in 
the following ways: 

■ It does not have a delete operation (hence being called a “deleteless” 
dictionary). This means that once a key-value pair has been added to the 
dictionary, there is no way of removing that key later. Insert should still 
update the values of previously added keys. 

■ It requires the operations findNextKey and findPrevKey, which take a 
key as input, and then return the smallest key in the dictionary that’s 
larger than that input, or the largest key in the dictionary that’s smaller 
than that input (respectively). These operations are the reason we call it 
an “Ordered” dictionary. 

■ It requires the operations getKeys and getValues, which return a list of 
the keys or values in the dictionary. These lists will both be sorted 
according to their keys, meaning index 0 of getKeys contains the 
smallest key and index 0 of getValues contains the value associated with 
the smallest key. 

○ Do not submit this file 
● BinarySearchTree 

○ When you download the zip, this will be a nearly complete implementation of a 
binary search tree. We have implemented all of the methods necessary to satisfy 
the OrderedDeletelessDictionary interface except for findNextKey and 
findPrevKey, which you will implement as part of this exercise. 

○ To help you with debugging, we have provided a method called printSideways, 
which displays the structure of the tree. The root of the tree will be in the left-most 
column, its children in the column after, and the children’s children in the column 
after that, etc. 

○ You will submit this file to Gradescope 
● AVLTree 

○ After finishing this exercise, this class will represent an implementation of an AVL 
tree data structure (minus the delete operation). It inherits from 
BinarySearchTree because many methods can be shared. In particular, since 
AVL trees have the same order property as binary search trees, all read-only 
methods can be shared. Only methods that modify the tree will need to be 
overridden. For this exercise, the only such method is insert, which you will 
implement (along with any helper methods you choose). 

○ You will submit this file to Gradescope 
● TreeNode 

○ This is a node class that is used by both AVLTree and BinarySearchTree. It has 
fields for the key, value, left child, right child, and height of the node. 
BinarySearchTree does not use the height field for anything, but it correctly 



 

maintains it nonetheless (which may be helpful to reference when writing the 
insert method for AVLTree). 

○ There is a method called updateHeight that will use the node’s children’s 
heights to correctly update its own. It assumes the heights of the children are 
correct, so it is up to you to meet that assumption before calling the method! 

○ Do not submit this file 
● Range 

○ This is an object to represent an event for the RangeTree data structure. It 
contains a start field, an end field (both doubles), and a string for the range. The 
constructor throws an IllegalArgumentException if the start is not strictly less 
than the end. 

○ Do not submit this file 
● RangeTree 

○ This class will be an implementation of the RangeTree data structure. You must 
complete the hasConflict and insert methods according to the descriptions in 
the comments. 

○ You will submit this file to Gradescope 
 



 

Part 1: AVLTree 
To obtain good worst-case performance of our OrderedDeletelessDictionary, we will 
implement an AVL tree data structure. The only method required by the interface that might 
modify the tree is the insert operation, so that is the only one that we will override within 
AVLTree (the rest will be inherited from BinarySearchTree). The sole task for this part is to 
write the insert method. The running time of this insert method should be O(log n). 
 
Recall that when inserting into an AVL tree, the general procedure is: 

- Navigate the tree as you would with find until you either find the key (in which case you 
update the value and return the old one), or else reach an empty spot in the tree (in 
which case you add your new key-value pair as a new leaf node at that spot and return 
null). 

- If you added a node, update the heights of the ancestor nodes as necessary, checking to 
see if any node becomes unbalanced. 

- If a node becomes unbalanced, perform the necessary rotations to correct the imbalance 
(make sure you update the nodes’ heights after rotation!) 

 
To implement this procedure, you’ll likely want to attempt one of two approaches: 

- A recursive method: 
- For this approach, you would employ the “x=change(x)” pattern that you learned 

in CSE123 or CSE143, provided you took those courses at UW. The idea is that 
you would have a recursive helper method that takes in a parameter for the key, 
the value, and a TreeNode. This helper method will perform an insert into the 
subtree rooted at the given node, and then return the new root of that subtree 
after the insert is complete (since that might change if a rotation was necessary). 

- To do this, you will likely have a base case for when the current root node 
matches the key we’re looking for (meaning you’ll update the value), and another 
when the current root is null (meaning that you’ll be creating a new node). 

- In the recursive case, you’ll want to identify which subtree of the current root 
should contain the given key (left if the key is smaller than the root).  

- After the recursive insertion is complete, check if the node returned is balanced. 
If not, then identify and perform the appropriate rotations, and then return the 
correct root (which the rotations may have changed). 

- An iterative method 
- For this approach, you will navigate through the tree as you would for a find. For 

each node you visit along the way, push that node onto a stack (so you can 
follow your path backwards to check balance later). If you choose this 
approach, you are welcome to import a stack data structure exclusively to 
be used in this way (e.g., java.util.Stack, java.util.ArrayList, or 
java.util.LinkedList). 

- If you find the key you’re looking for, you will update the value and return the old 
one. 



 

- If you create a new leaf, then one node at a time, pop a node off the stack, 
update that node’s height, and check for balance. If the node is unbalanced, then 
perform the necessary rotations. 

Part 2: findNextKey and findPrevKey 
Because our dictionary is ordered (meaning we have information about the comparisons 
between keys based on where they appear in our data structure), we have extra opportunities to 
implement methods that leverage that order. For this part, you will implement two new find-like 
operations for BinarySearchTree – findNextKey and findPrevKey. 
 
These operations will be like find in that you will navigate the binary search tree using its order 
property. They will be unlike find, though, because we will be returning a key rather than a value. 
 
For findNextKey, we want to return the smallest key that is larger than the key given. In other 
words, we want to return the “next key up” from the given key from among those currently in the 
data structure. If the given key happens to be in the data structure, then we will still return a key 
strictly larger than the given key (i.e., the successor of that key). If the given key is greater than 
or equal to the largest key in the data structure, then return null.  
 
For findPrevKey, we do the same, but with all comparisons reversed. That is, we want to 
return the largest key that is smaller than the key given. If the given key is less than or equal to 
the smallest key in the data structure, then we will return null.  
 
If the tree is empty in findNextKey and findPrevKey return null. 
 
The running time of both operations should be linear in the height of the binary search tree (and 
will therefore be logarithmic in the size of the tree for an AVL tree). 

Part 3: RangeTree 
Now, the moment we’ve been waiting for, the RangeTree! In this data structure, we make use of 
our OrderedDeletelessDictionary implementations. Implement the hasConflict and 
insert methods according to the descriptions in the method comments. 
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