
Name: ____Sample Solution___________________

UWNetID: _____________________________________

CSE 332 Winter 2019: Midterm Exam
(closed book, closed notes, no calculators)

Instructions: Read the directions for each question carefully before answering. We will

give partial credit based on the work you write down, so show your work! Use only the

data structures and algorithms we have discussed in class so far.

Note: For questions where you are drawing pictures, please circle your final answer.

Good Luck!

VERSION I

Total: 100 points. Time: 60 minutes.

Question Max Points Score

1 18 Big-O

2 16 Code Analysis

3 9 Theta, etc

4 8 Heaps

5 6 AVL

6 9 Find Recurrence

7 10 Solve Recurrence

8 8 BTrees

9 5 BTrees

10 7 AVL

11 4 Heaps

Total 100

2 of 12

1. (18 pts) Big-Oh
(2 pts each) For each of the operations/functions given below, indicate the tightest bound

possible (in other words, giving O(2N) as the answer to every question is not likely to

result in many points). Unless otherwise specified, all logs are base 2. Your answer

should be as “tight” and “simple” as possible. For questions that ask about running

time of operations, assume that the most efficient implementation is used. For array-

based structures, assume that the underlying array is large enough.

You do not need to explain your answer.

a) Inserting an element into a binary min heap

containing N elements. (BEST case) __________________

b) f(N) = 200 log (N2) + 5 (log N)2 __________________

c) Finding and removing the largest item in a

binary search tree containing N elements. (BEST case) __________________

d) T(N) = T(N - 1) + N __________________

e) f(N) = log4(N
2) + log4 (2

N) __________________

f) Printing all values less than a given value in an

AVL tree containing N integers. (worst case) __________________

g) T(N) = T(N/2) + 17 __________________

h) Push in a stack containing N elements implemented

using singly-linked list nodes (worst case) __________________

i) Using deleteMin() to remove the log N smallest

elements in a binary min heap containing N elements. __________________

 Page 3 of 12

2. (16 pts) Big-Oh and Run Time Analysis: Describe the worst case running time of

the following pseudocode functions in Big-Oh notation in terms of the variable n.

Your answer should be as “tight” and “simple” as possible. Showing your work is

not required.

I. void sledding(int n) {
 int sum = 0;

 for (int i = 1; i < Math.pow(2, n); i *= 2) {

 if (i < 10000000) {

 for (int j = 0; j < Math.pow(2, i); j++) {

 sum++;

 }

 } else {

 for (int k = 1; k < n; k *= 2) {

 sum--;

 }

 }

 }

 print("done!");

}

II. int snow(int n, int ball) {
 if (n < 200) {

 return n / 2;

 } else if (n < 3000) {

 for (int i = 0; i < n * n; i++) {

 ball++;

 }

 return ball;

 }

 ball += snow(n / 2, ball);

 return n * snow(n / 2, ball);

}

III. void snowshoe(int n, int sum) {
int j = 0;

while (j < n) {

 for (int i = 0; i < n; i++) {

 sum++;

 }

 for (int k = n; k > 0; k = k/2) {

 sum++;

 }

 j++;

}

}

IV. void skiing(int n) {
 for (int i = 0; i < n; i = i + n/2) {

 for (int j = n; j > 0; j = j – n * 2) {

 print("downhill");

 }

 }

}

Runtime:

4 of 12

3. (9 pts) Big-O, Big Ω, Big 
(3 pts each) For each of the following statement, indicate whether it is always true,

sometimes true, or never true. You do not need to show any work or give an

explanation. You should assume that the domain and co-domain of all functions in this

problem are the natural numbers.

a) f(n) is O ((f(n))2)

Always True Sometimes True Never True

b) f(n) + g(n) is  (max{ f(n), g(n) })

Always True Sometimes True Never True

c) f(n) * n is  ((f(n))2)

Always True Sometimes True Never True

 Page 5 of 12

4. (8 pts) Binary MAX Heaps
Suppose you are given a binary MAX heap. This is identical to the binary min heap

discussed in lecture except that the value stored at the root is the largest in the heap. For

this problem we will assume no duplicate values may exist in the heap.

a. At what depths in the tree (distance from the root) can the fourth-largest

value occur? List all depths where the value might occur.

b. Draw an example of a binary MAX heap tree of integers (do not draw the

array) where the fourth-largest value occurs at the minimal possible depth.

Be sure you draw an integer for each node in the tree and that you draw

a box around the 4th largest value.

c. Draw an example of a binary MAX heap tree of integers (do not draw the

array) where the fourth-largest value occurs at the maximal possible depth.

Be sure you draw an integer for each node in the tree and that you draw

a box around the 4th largest value.

6 of 12

5) (6 pts) AVL Trees

You are given an AVL-Tree of height 5 and you are told what the largest key in the tree

is. If you are doing a pre-order traversal of the tree, how many nodes in the tree will

you visit before you encounter the largest key? Give your answer as a single number

(not a mathematical expression) but explain your answer briefly.

a) In the BEST case, what is the minimum number of nodes you would visit (include the

largest key in your count of nodes)? Explain your answer briefly.

b) In the WORST case, what is the maximum number of nodes you would visit?

(include the largest key in your count of nodes) Explain your answer briefly.

 Page 7 of 12

6. (9 pts) Recurrences

Give a base case and a recurrence for the runtime of the following function. Use variables

appropriately for constants (e.g. c1, c2, etc.) in your recurrence (you do not need to

attempt to count the exact number of operations). YOU DO NOT NEED TO SOLVE

this recurrence.

int cake(int n) {

 if (n < 10) {

 return 1000;

 } else if (cake(n/4) < 100) {

 for (int i = 0; i < n * n; i++) {

 print i;

 }

 }

 for (int i = 0; i < log(n); i++) {

 print("Cakes have layers!");

 }

 return cake(n/3) * n + 10 * cake(n/3);

}

T(n) = ___ For n < 10

T(n) = __ For n >= 10

Yipee!!!! YOU DO NOT NEED TO SOLVE this recurrence…

8 of 12

7. (10 pts) Solving Recurrences

Suppose that the running time of an algorithm satisfies the recurrence relationship:

 T(1) = 10.

and

 T(N) = 2 * T(N/2) + 9N for integers N > 1

Find the closed form for T(N). You may assume that N is a power of 2. Your answer

should not be in Big-Oh notation – show the relevant exact constants and bases of

logarithms in your answer (e.g. do NOT use “c1, c2” in your answer). You should not

have any summation symbols in your answer. The list of summations on the last page of

the exam may be useful. You must show your work to receive any credit.

 Page 9 of 12

8. (8 pts total) B-Trees:

a) (6 pts) Given M=7 and L=11, what is the minimum and maximum number of leaf

nodes in a B-Tree (as defined in lecture and in Weiss) of height 5? Give a single

number or a single number with an exponent for your answers, not a formula. For

any credit, explain briefly how you got your answers.

Minimum number of leaf nodes: ______________

Maximum number of leaf nodes: ______________

Explanation:

b) (2 pts) Assuming a well-constructed B-tree, with nothing cached in memory, what is

the minimum number of disk blocks we would need to examine on a find operation in

the B-Tree described above? Explain your answer briefly.

10 of 12

9. (5 pts) B-trees - Give a tight big-O running time of the worst case of an insert

operation on a B-tree (as described in lecture and in Weiss). Keep all factors of M, L,

and N in your answer. Do not use any other variables in your answer. Explain briefly

how you got your answer.

 Page 11 of 12

10. (7 pts) AVL Trees

We have an AVL tree that contains the integers 1, 2, 3, …20. We do not know what order

the values were inserted into the tree. List all possible values that could appear as the

root. For any credit, briefly explain your answer.

Possible Values for the root:

12 of 12

11. (4 pts) Heaps

You are given a valid array-backed D-heap that stores the smallest value in the heap at

index 0. Your friend proposes an alternative implementation for deleteMin() that

proceeds as follows:

1. Remove and return the element at index 0.

2. Define index 0 as “the hole”.

3. Find the smallest value x out of all the immediate children of “the hole”.

4. Move that value x into “the hole”. Redefine “the hole” as the vacant index

previously occupied by value x.

5. Repeat steps 3-4 until “the hole” has no children.

a. Given a valid D-heap, give a tight big-O running time of the worst case of

this new implementation in terms of N and D. KEEP all D and N terms in

your answer, do not simplify your answer by removing D terms.

Briefly explain your answer.

b. Would this algorithm be an acceptable implementation of deleteMin()?

Briefly explain why or why not.

