1) 10 Points

Compute an appropriately tight O (big-O) bound on the running time of each code
fragment, in terms of n. Assume integer arithmetic. Circle your answer for each fragment.

a) for(i = 0; i < n; i++) |

for(j = 0; j < n; j++) | L{)
for(k = 0; k < i * j; kt++) {
sum++; K-r-/ O(ﬂ_
} nJL

b) for(i =1; i <n; i=1* 2) { 109"-
for(j = 1; j < i; j++) | T

: sum++; O(i /05 VL)
; Achually , this is O()

T+ executes Zn-| iacrewents
¢) for(i =0; i <n; i++) { n
myArray = new arrayl[i]; 2 /
for(j = 0; j < i; j++) { N Vl)
myArray[j] = random(); O(n 05

}
mergeSort (myArray); N {03 48

d) for(i = 0; i < n; i++) { N
tree = new UnbalancedBinarySearchTree(); 3
for(j = 0; j < n; j++) {n O n)
tree.insert (j);

}
} “lish" tree cesults

e) tree = new AVLTree();
for(i = 0; i < n; i++) { N

for(j = 0; 3 < n; j++) { N 3
tree.insert (random()); O(ﬂ /09 40
} a

msects n ikems ak

log cosk Gr eacd

Unique ID: «Unique_ID» 3

2) 10 points

This problem asks you to describe how to perform queue operations in O(1) time for a
link-based implementation of a queue. Declare variables used by your implementation
(e.g., any pointers maintained in the queue). Provide pseudocode for the requested
operations (precise English is also acceptable, but pseudocode will be more concise).
Finally, show the state of your data structure after the given operations (including the
values of the variables you declared in (a) and manipulated in (b) and (c)).

Assume a node class containing fields value and next.
For an link-based implementation of a queue with O(1) enqueue and O(1) dequeue:

a) Declare any variables used by your implementation:
Lot = Bowk of gueue
back = bact oF gueue

b) Describe how to implement O(1) enqueue:

 F frout s null
Fout = back = new yode (ua(ue’ nu.”)

e lse
baf-‘? > next =

b:,ot < Iaqce-yﬂﬂ‘d'

new wode (walue, null)

c¢) Describe how to implement O(1) dequeue:
iE Fout 15 aw I
Hiow €% C’e,o"" o

glse ol
-+ = O

J;’Zﬂ;- = F(-ow.{"-%ﬂexi"

i Xeounb s neall no'r r?qu-fﬁ’a{ 4 “Jusf- hece for

feh?:lc t‘!':m“;!-"[’ value € leantmess oF vaciable Shate
d) Draw your data structure after executing the following operations. You only need to

show a total of one queue (the one which exists after all five operations complete).

enqueue (54) ; enqueue(Zl} ; dequeue(); enqueue(l3); engueue(47);
front

Unique ID: «Unique_ID» 4

10

3) XX Points
Consider this binary min-heap: 1
/ 0\
6 9
/N
10 7 11

Perform the following operations in order, drawing the result after each operation and
using it as the starting point for the next operation. You only need to show the result of
the operation, but showing your work will allow partial credit in case of error.

If the space here is insufficient, use the back of this sheet (clearly labeling your work).
Circle the result of each operation so we can distinguish it from intermediate work.

a) DeleteMin

|
ﬁ\ £\
E&q 79
/\Q/ / /\
lo 1 1

b) Insert 8
© @
e N £ >
17 =9 K i
s\ F” & ’
o (1 B o 4
c) Insert 2
b o
/7 \\ S N
o
7 5 7
s\ / '\\ £ / \8
lo !l 9
/o 1 9 El

Unique ID: «Unique_ID»

d) Draw an efficient array-based representation of your final heap from step c.

SAREIDDIMEIR)

e) In your array-based representation, what is the index of:

the parent of the node at index i:

v/

the left child of the node at index i:
X

the right child of the node at index i:

i + |

Unique ID: «Unique_ID»

4) 10 Points

Consider this AVL tree: g

Perform the following operations in order, drawing the result after each operation and
using it as the starting point for the next operation. You only need to show the result of
the operation, but showing your work will allow partial credit in case of error.

Circle the result of each operation so we can distinguish it from intermediate work.

a) Insert 52 ,Gl sR /q\
4 /L\fj H 68
@ s2 17
52

b) Delete 9 We did not cover general AVL delete. But if you did the previous
operation correctly, you can delete this without creating an imbalance.

-~
s swuccessofl LCD S—Q
Y

/ N
preoleccésar L’ /(93\ Lf (0?\
leads fo & 52 17 77
Tmbalanct
c) Insert 75
/'5'2 DR , S’?\
. q s
9;?7 8 17

75
d) Insert 55 @ %a £q: 9

4
q4 3715 Y’ \(03 4;',2/ b
/ \ 7\ . A 15
& 77 §s 75 y 55 \
/ > 77
55 17

Unique ID: «Unique_ID» 7

5) 10 points

Perform the following B-Tree operations. Use the algorithms presented in lecture,
homework, and the text (i.e., for a B+ Tree). Do not adopt during insertion (although
possible, this was not the presented algorithm). You only need to show the result of the
operation, but showing your work will allow partial credit in case of error. Circle the
result of each operation so we can distinguish it from intermediate work.

a) Beginning with the provided tree, insert an object with key 40.

18 §32 /@
~

3 ||18]32 IBI }EQ@
14 | [30 | |36

o ianer node 22 to

54 s pht
4o

/_‘;fr":/_\ 1€ 32 40 , S
32| |HO f
34| |5y
i

b) Beginning with the provided tree, delete the object with key 14.

18 7§Q4
14 36 g 40 IS } l7/{7
3 18 | |36 | |40 1
3 ‘5_‘_ 1% 3L ﬂ

12 | |16 30 | 38| |45
12| 30 38| 45
I -
n:ir_ie T-bormd upala'-e ﬂ il L_J
E; 6‘.Iaf'awj e hode —
(P ey S
o

Unique ID: «Unique_ID» 8

n s

Answer the following questions regarding a B-Tree implementation. Answer based on the
data structure presented in lecture, homework, and the text (i.e., based on a B+ Tree).

Your brilliant teaching assistants have implemented a B-Tree in order to better track and
correct your instructor’s many mistakes. They give a name to each mistake and use the
name as a key to store information about when the mistake was made, who is responsible
for correcting it, and information about their progress. The parameters of the tree are:

Pointer Size = 8 bytes
Key Size = 12 bytes
Data Size = 52 bytes
M=13

L=4

c) Assuming these parameters were appropriately chosen to fit within a disk block, what
is the likely size of disk blocks on the machine where this implementation is deployed?
Give a numeric answer and a short justification. This justification should be based
on one or more equations using the above parameter values.

Tudecnal Node Size Mp + (M- E
R.8 + (2-1R = [04+ 4 = Q48 byles

Lecf Node Size L (k+d)
1_,,(;9_4-5‘3)7 (o) = 256 bytes

max oF He fwo s 256 hytes

d) Given these B-Tree parameters, what is the maximum number of items that can be
stored in a tree of height 2? Give a numeric answer. Show your work for partial
credit in case of an arithmetic error, but we do not expect a general equation.

O (oF hes M childen M ML
IO eodt has M childea 13-13-4
(L quA [aafF ras L olowents | 09 - L/

Hoo + 340 +3 = 70

Unique ID: «Unique_ID» 9

() 210 points

Using a hash table of size 10 with open addressing and quadratic probing, perform the

following sequences of actions and answer the associated questions. Objects can be
represented simply by their hashcodes. Do not grow the size of the hashtable.

a) Insert a sequence of objects with hashcodes 22, 42, 47, 12, 37, 57.

0 1 2 3 4 5 6 7 8 9

57 |32 |42 PR NENY

b) What is the load factor of your table after (a)?

w/ro . b

¢) Can we guarantee that any additional insert will succeed? Why or why not?
Make a simple and precise argument based on your knowledge of hashtables.
An argument based on brute-force hashing at every location is not appropriate.

ND. Quac!ra.'hc Prb{ol“w) 1S ﬁuar‘dnm
ke sizc
7% prme qond load Fackor 1S ess
Miacn ;& A/ei"Lor s e

N succeed otn ’\/

d) Delete the object with hashcode 47.

0 1 2 3 4 5 6 7 8 9

57 | 22 | 4R 2| X [
e) W Insert a sequence of objects with hashcodes 53, 83.
0 1 2 3 4 5 6 ¢ 8 9
5T |2 |4 |93 2 |35 |51

Unique ID: «Unique_ID»

12

7) 10 Points

a) Show the state of the array after each execution of the outer loop of a selection sort.

Make the minimal number of swaps necessary in each iteration.

27

64

44

38

40

9

q

oM

14

38

Y

L1

£

21

4

38

o

64

Z1

53

7y

40

64

x1

58

o

4

64

x1

38

Yo

44

M

|0 || D[]0

L1

38

o

Y

64

Unique ID: «Unique ID»

11

b) »Y Show a quicksort partition of this array. Choose a pivot using a median of the first,
‘middle, and last elements of the array. Show the array after each swap conducted in
the course of the partition. Make the minimal number of necessary swaps.

The provided number of boxes does not correspond to the number of necessary swaps.
A correct answer will complete the partition and leave some of these boxes blank.

After completing the partition, indicate which subarrays will be recursively quicksorted
(e.g., by circling each of them and writing ‘recurse’ next to each of your circles).

27 | 64 | 44 | 38 | 40 | 9 | 52

p JoF o

mechon (138,52 3g | 4| vy | 1o | 7 [52] pove ot ouf oy
v

phzo"'om?x? 3361‘7‘{27"/0(0"{5?-
|4 |27 (44 |40 |6y | SL

e

Qﬂ 1)38 (qq 40|64 5’&) swop prot bk
\

(e curse recurse

Unique ID: «Unique_ID» 14

